PREPARATION AND OPTIMIZATION OF CILOSTAZOL NANOEMULSION ORAL LIQUID DOSAGE FORM
DOI:
https://doi.org/10.22159/ijap.2023v15i5.48704Keywords:
Nanoemulsion, ,Pseudo-ternary phase diagram, Solubility, CilostazolAbstract
Objective: Cilostazol has poor water solubility and low oral bioavailability. Therefore, the formulation of cilostazol as a nanoemulsion may enhance its solubility and improve oral bioavailability. Hence, the aim of this study was to formulate and characterize an oil-in-water (o/w) nanoemulsion of cilostazol as an oral liquid dosage form.
Methods: Pseudo-ternary phase diagrams were constructed using the aqueous titration method. Formulations of pseudo-ternary phase plots consisting of oil, various weight ratios of S mix (mixture of surfactant and co-surfactant), and deionized water were made. Different characterization studies, droplet size measurement, polydispersity index, drug content, zeta potential measurement, and in vitro release have been conducted to choose the optimized formula.
Results: The characterization studies have demonstrated that the optimized formula is (F-6), consisting of 20 % S mix (3:1), 10% ginger oil, and 70% deionized water. This formula had the following characteristics; droplet size (72.9-110 nm), polydispersity index (0.22), percentage of drug content (99.8%), and in vitro release of cilostazol nanoemulsion was significantly higher (P<0.05) in comparison with other formulations. A Scanning probe microscopy (SPM) study has revealed that the droplet size of F-6 was at the nano-scale.
Conclusion: In conclusion, the optimized cilostazol formula (F-6) is a promising formula which may have the capability of improving the oral bioavailability of cilostazol.
Downloads
References
Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727, PMID 22830056.
Solubility Enhancement Techniques: a review. IJPR. 2021;13(3). doi: 10.31838/ijpr/2021.13.03.121.
Mahour R, Sahni JK, Sharma S, Kumar S, Ali J, Baboota S. Nanoemulsion as a tool for improvement of cilostazol oral bioavailability. J Mol Liq. 2015;212:792-8. doi: 10.1016/j.molliq.2015.10.027.
Ali HH, Hussein AA. Oral nanoemulsions of candesartan cilexetil: formulation, characterization and in vitro drug release studies. AAPS Open. 2017;3(1). doi: 10.1186/s41120-017-0016-7.
Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv. 2016;23(6):2035-43. doi: 10.3109/10717544.2015.1088597, PMID 26406153.
Navaneetha K, Rao VVB. Formulation and evaluation of solid-supersaturable-snedds of ibrutinib. Int J App Pharm. 2022;14:161-9. doi: 10.22159/ijap.2022v14i5.45067.
Poluri K, Sistla RK, Veerareddy PR, Narasu ML. Formulation and preparation of felodipine nanoemulsions. Asian J Pharm Clin Res. 2011;4:116-7.
Ke Z, Zhu ZP, Xu ZY, Fang C, Hu SQ. Formulation design and in vitro evaluation of berberine-loaded self-nanoemulsifying drug delivery system. Trop J Pharm Res. 2015;14(5). doi: 10.4314/tjpr.v14i5.1.
Talegaonkar S, Mustafa G, Akhter S, Iqbal ZI. Design and development of oral oil-in-water nanoemulsion formulation bearing atorvastatin: in vitro assessment. J Dispers Sci Technol. 2010;31(5):690-701. doi: 10.1080/01932690903120540.
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review. Trop J Pharm Res. 2013;12:265-73. doi: 10.4314/tjpr.v12i2.20.
Ghareeb MM, Neamah AJ. Formulation and characterization of nimodipine nanoemulsion as ampoule for oral route. Int J Curr Pharm Res. 2017;8:591-602. doi: 10.13040/IJPSR.0975-8232.8(2).591-602.
Ramakrishna S, Mihira V, Raja Vyshnavi K, Ranjith V. Design and evaluation of drug release kinetics of meloxicam sustained release matrix tablets. Int J Curr Pharm Res. 2012;4:90-9.
Zhang L, Sakai T, Sakuma N, Ono T, Nakayama K. Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy. Appl Phys Lett. 1999;75(22):3527-9. doi: 10.1063/1.125377.
Patel SG, Rajput SJ. Enhancement of oral bioavailability of cilostazol by forming its inclusion complexes. AAPS PharmSciTech. 2009;10(2):660-9. doi: 10.1208/s12249-009-9249-7, PMID 19459053.
Date AA, Nagarsenker MS. Design and evaluation of self-nano emulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1-2):166-72. doi: 10.1016/j.ijpharm.2006.08.038, PMID 17010543.
Sisinthy SP, Rao NK, Sarah CYL. Design, optimization and in vitro characterization of self Nano emulsifying drug delivery system of olmesartan medoxomil. Int J Pharm Pharm Sci. 2016;9(1):94. doi: 10.22159/ijpps.2017v9i1.15166.
Ngan CL, Basri M, Tripathy M, Abedi Karjiban RA, Abdul Malek E. Physicochemical characterization and thermodynamic studies of nanoemulsion-based transdermal delivery system for fullerene. Scientific World Journal. 2014;2014:219035. doi: 10.1155/2014/219035, PMID 25165736.
Izquierdo P, Feng J, Esquena J, Tadros TF, Dederen JC, Garcia MJ. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J Colloid Interface Sci. 2005;285(1):388-94. doi: 10.1016/j.jcis.2004.10.047, PMID 15797437.
Roldan Cruz C, Vernon Carter EJ, Alvarez Ramirez J. Assessing the stability of Tween 80-based O/W emulsions with cyclic voltammetry and electrical impedance spectroscopy. Colloids Surf A Physicochem Eng Aspects. 2016;511:145-52. doi: 10.1016/j.colsurfa.2016.09.074.
Elmarzugi NA. Preparation and evaluation of olive oil nanoemulsion using sucrose monoester. Int J Pharm Pharm Sci. 2013;5:434-40.
Che Marzuki NH, Wahab RA, Abdul Hamid M. An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019;33(1):779-97. doi: 10.1080/13102818.2019.1620124.
Das S, Sharadha M, Venkatesh MP, Sahoo S, Tripathy J, Gowda DV. Formulation and evaluation of topical nanoemulgel of methotrexate for rheumatoid arthritis. Int J App Pharm. 2021;13:351-7. doi: 10.22159/ijap.2021v13i5.41026.
Hasani F, Pezeshki A, Hamishehkar H. Effect of surfactant and oil type on size droplets of Betacarotene bearing nanoemulsions. Int J Curr Microbiol Appl Sci. 2015;4:146-55.
Sarheed O, Dibi M, Ramesh KVRNS. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics. 2020;12(12):1223. doi: 10.3390/pharmaceutics12121223, PMID 33348692.
Shah VP, Konecny JJ, Everett RL, McCullough B, Noorizadeh AC, Skelly JP. In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactants. Pharm Res. 1989;6(7):612-8. doi: 10.1023/a:1015909716312. PMID 2798311.
Saini K, Gaba P, Singh J. Design, development and evaluation of nanoemulsion gel of salicylic acid. Int J Innov Pharm Sci Res. 2014;2:1168-91.
Published
How to Cite
Issue
Section
Copyright (c) 2023 ABULFADHEL JABER NEAMAH AL-SHAIBANI, KARRAR AL-GBURI, KARRAR TALIB KHUDHAIR ALBO HAMRAH
This work is licensed under a Creative Commons Attribution 4.0 International License.