PREPARATION, CHARACTERISATION, EVALUATION AND DFT ANALYSIS OF CILNIDIPINE-L-PHENYLALANINE COCRYSTAL
DOI:
https://doi.org/10.22159/ijap.2023v15i6.49228Keywords:
Cocrystals, Cilnidipine, L-phenylalanine, Coformer, Liquid assisted grinding, Solubility enhancementAbstract
Objective: The objective of this study was to prepare, characterise and evaluate pharmaceutical cocrystals of Cilnidipine using L-phenylalanine as the coformer to enhance the aqueous solubility of Cilnidipine. It was also proposed to study the mechanism of cocrystal formation based on Density Functional Theory (DFT) using Gaussian software.
Methods: To overcome the limitation of poor aqueous solubility of Cilnidipine, a 1:1 pharmaceutical cocrystal of Cilnidipine was prepared using L-phenylalanine as the coformer by liquid assisted grinding (LAG) technique. The resultant cocrystals were characterised by Fourier transform-infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and field emission scanning electron microscopy (FE-SEM). They were evaluated for their saturation solubility in water. The mechanism of cocrystal formation was studied at the DFT level of theory.
Results: The band broadening of the–NH and–NO peaks in FTIR spectra of Cilnidipine indicated the formation of hydrogen bonds in the prepared cocrystals. A single sharp melting endotherm at 218.40 °C in the DSC curve confirmed the formation of cocrystals. The appearance of new peaks in the PXRD pattern of the prepared cocrystals showed the formation of a new crystalline phase. FE-SEM analysis also confirmed the above findings. The prepared cocrystals exhibited 3.31 folds enhancement in saturation solubility. The DFT analysis showed the formation of intrmolecular hydrogen bonding between the–NO of Cilnidipine and–NH of L-phenylalanine.
Conclusion: The present study demonstrated a successful approach for enhancing the solubility of poorly water-soluble drug Cilnidipine by cocrystallisation technique using L-phenylalanine as the coformer.
Downloads
References
Chadha R, Saini A, Arora P, Bhandari S. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs. Crit Rev Ther Drug Carrier Syst. 2012;29(3):183-218. doi: 10.1615/critrevtherdrugcarriersyst.v29.i3.10, PMID 22577957.
Agustina R, Setyaningsih D. Solid dispersion as a potential approach to improve dissolution and bioavailability of curcumin from Turmeric (Curcuma longa l.). Int J App Pharm. 2023 Sep 7:37-47. doi: 10.22159/ijap.2023v15i5.48295.
Duggirala NK, Perry ML, Almarsson O, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun (Camb). 2016;52(4):640-55. doi: 10.1039/c5cc08216a. PMID 26565650.
Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;12(5):2147-52. doi: 10.1021/cg3002948.
Kumar S, Nanda A. Approaches to design of pharmaceutical cocrystals: a review. Mol Cryst Liq Cryst. 2018 May 24;667(1):54-77. doi: 10.1080/15421406.2019.1577462.
Thakkar H, Patel B, Thakkar S. A review on techniques for oral bioavailability enhancement of drugs. Int J Pharm Sci Rev Res. 2010 Oct;4(3):203-23.
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P. Recent advances in pharmaceutical cocrystals: from bench to market. Front Pharmacol. 2021 Nov 11;12:780582. doi: 10.3389/fphar.2021.780582, PMID 34858194.
Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950-67. doi: 10.1021/cg900129f, PMID 19503732.
Regulatory classification of pharmaceutical co-crystals: guidance for industry. Center for Drug Evaluation and Research, United States Department of Health and Human Services, FDA; 2018. Available from: https://www.fda.gov/media/81824/download. [Last accessed on 04 Oct 2023]
Stoler E, Warner JC. Non-covalent derivatives: cocrystals and eutectics. Molecules. 2015 Aug 14;20(8):14833-48. doi: 10.3390/molecules200814833, PMID 26287141.
Guideline for the Pharmacological Treatment of Hypertension in Adults. World Health Organization; 2021. Available from: https://apps.who.int/iris/bitstream/handle/10665/344424/9789240033986-eng.pdf. [Last accessed on 23 Jun 2023]
Kumar VM, Madhu Y, NM, Suvid L, Grace NS. To evaluate the safety and efficacy of amlodipine and chlorthalidone in combination with telmisartan in hypertensive patients attending tertiary care centre, Telangana. Int J Pharm Pharm Sci. 2022 Nov 1:37-42. doi: 10.22159/ijpps.2022v14i11.46070.
Soeki T, Kitani M, Kusunose K, Yagi S, Taketani Y, Koshiba K. Renoprotective and antioxidant effects of cilnidipine in hypertensive patients. Hypertens Res. 2012;35(11):1058-62. doi: 10.1038/hr.2012.96, PMID 22763473.
Kumar V, Agarwal S, Saboo B, Makkar B. RSSDI Guidelines for the management of hypertension in patients with diabetes mellitus. Int J Diabetes Dev Ctries. 2022;42(4)Suppl 1:1-30. doi: 10.1007/s13410-022-01143-7, PMID 36536953.
Dual TA L/N-Type Ca2+Channel blocker: Cilnidipine as a new type of antihypertensive drug. Antihypertens Drugs; 2012.
RR, Om S, Kaladharan A. Evaluation of renoprotective effect of cilnidipine in patients with mild to moderate hypertension and type 2 diabetes mellitus–a prospective study. Asian J Pharm Clin Res. 2021 Jan 5:144-6.
PubChem. PubChem Compound Summary for CID 5282138, Cilnidipine. Bethesda: National Library of Medicine (US). National Center for Biotechnology Information; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cilnidipine. [Last accessed on 19 Aug 2023].
Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20. doi: 10.1023/a:1016212804288, PMID 7617530.
Chadha R, Sharma M, Haneef J. Multicomponent solid forms of felodipine: preparation, characterisation, physicochemical and in vivo studies. J Pharm Pharmacol. 2017 Feb 20;69(3):254-64. doi: 10.1111/jphp.12685, PMID 28134976.
Fukte S, Wagh PM, Rawat S. Conformer selection: an important tool in cocrystal formation. Int J Pharm Pharm Sci. 2014 Jul;6(7):9-14.
Nugrahani I, Jessica MA. Amino acids as the potential co-former for co-crystal development: a review. Molecules. 2021 May 28;26(11):3279. doi: 10.3390/molecules26113279, PMID 34071731.
Tilborg A, Norberg B, Wouters J. Pharmaceutical salts and cocrystals involving amino acids: a brief structural overview of the state-of-art. Eur J Med Chem. 2014 Mar;74:411-26. doi: 10.1016/j.ejmech.2013.11.045, PMID 24487190.
Saraf GJ, Burade KKB, Gonjari ID, Hosmani AH, Pawar AA. A review on advances in pharmaceutical co-crystal preparation routes, intellectual property perspective and regulatory aspects. Int J Curr Pharm Sci 2022;14(5):4-12. doi: 10.22159/ijcpr.2022v14i5.2038.
SCOGS (Select Committee on GRAS Substances). Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=SCOGS.
Special Dietary and Nutritional Additives: amino acids, 21 C.F.R. Vol. 320(172); 2023.
Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di-and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. Cryst Eng Comm. 2005;7(90):551. doi: 10.1039/b509162d.
Cruz Cabeza AJ. Acid–base crystalline complexes and the pKa rule. Cryst Eng Comm. 2012;14(20):6362. doi: 10.1039/c2ce26055g.
Li F, Zheng Z, Xia S, Yu L. Synthesis, co-crystal structure, and DFT calculations of a multicomponent co-crystal constructed from 1H-Benzotriazole and tetrafluoroterephthalic acid. J Mol Struct. 2020 Nov;1219:128480. doi: 10.1016/j.molstruc.2020.128480.
Safna Hussan KP, Shahin Thayyil M, Rajan VK, Muraleedharan K. DFT studies on global parameters, antioxidant mechanism and molecular docking of amlodipine besylate. Comput Biol Chem. 2019 Jun;80:46-53. doi: 10.1016/j.compbiolchem.2019.03.006, PMID 30897526.
Kemp W. Organic spectroscopy. London: Macmillan Education UK; 1991. Available from: http://link.springer.com. [Last accessed on 12 Aug 2023].
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian Inc, Wallingford CT. Gaussian 09; 2016. Available from: https://gaussian.com. [Last accessed on 04 Oct 2023].
Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: integrated platform of small molecules and biological activities. Elsevier; 2008. p. 217-41.
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011 Dec;3(1):33. doi: 10.1186/1758-2946-3-33, PMID 21982300.
Weinhold F, Landis CR. Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract. 2001;2(2):91-104. doi: 10.1039/B1RP90011K.
Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des. 2009 Feb 4;9(2):1106-23. doi: 10.1021/cg800936d.
Karimi Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018 Oct 3;18(10):6370-87. doi: 10.1021/acs.cgd.8b00933.
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011 Oct;419(1-2):1-11. doi: 10.1016/j.ijpharm.2011.07.037, PMID 21827842.
Wang LL, Wang LY, Yu YM, Li YT, Wu ZY, Yan CW. Cocrystallization of 5-fluorouracil and l-phenylalanine: the first zwitterionic cocrystal of 5-fluorouracil with amino acid exhibiting perfect in vitro/vivo pharmaceutical properties. Cryst Eng Comm. 2020;22(30):5010-21. doi: 10.1039/D0CE00713G.
Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. NY: John Wiley & Sons, Inc; 2005. p. 80-107.
Enxian Lu, NRH RS. Supplemental data XRD co-crystals rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008;1(c):1-14.
Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2013 Jan 21;30(1):70-80. doi: 10.1007/s11095-012-0850-1, PMID 22907418.
Saganowska P, Wesolowski M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J Therm Anal Calorim. 2018;133(1):785-95. doi: 10.1007/s10973-017-6858-3.
Lu E, Rodriguez Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008;10(6):665. doi: 10.1039/b801713c.
Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst Growth Des. 2015;15(3):1173-9. doi: 10.1021/cg501532k.
Padrela L, De Azevedo EG, Velaga SP. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture. Drug Dev Ind Pharm. 2012 Aug;38(8):923-9. doi: 10.3109/03639045.2011.633263, PMID 22092083.
Bolla G, Chernyshev V, Nangia A. Acemetacin cocrystal structures by powder X-ray diffraction. IUCRJ. 2017 May 1;4(3):206-14. doi: 10.1107/S2052252517002305, PMID 28512568.
Chernyshev VV. Structural characterization of pharmaceutical cocrystals with the use of laboratory X-ray powder diffraction patterns. Crystals. 2023 Apr 9;13(4):640. doi: 10.3390/cryst13040640.
Srivastava K, Shimpi MR, Srivastava A, Tandon P, Sinha K, Velaga SP. Vibrational analysis and chemical activity of paracetamol–oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach. RSC Adv. 2016;6(12):10024-37. doi: 10.1039/C5RA24402A.
Prajapati P, Pandey J, Tandon P, Sinha K, Shimpi MR. Molecular structural, hydrogen bonding interactions, and chemical reactivity studies of ezetimibe-L-proline cocrystal using spectroscopic and quantum chemical approach. Front Chem. 2022 Feb 15;10:848014. doi: 10.3389/fchem.2022.848014, PMID 35242745.
Published
How to Cite
Issue
Section
Copyright (c) 2023 RENJISH C., SIBI P. ITTIYAVIRAH, JYOTI HARINDRAN, SUDHAKARAN NAIR C. R.
This work is licensed under a Creative Commons Attribution 4.0 International License.