CHARACTERISATION, EVALUATION AND DENSITY FUNCTIONAL ANALYSIS OF CILNIDIPINE-NICOTINAMIDE COCRYSTALS DEVELOPED BY LIQUID ASSISTED GRINDING TECHNIQUE: A SUSTAINABLE APPROACH FOR ENHANCED SOLUBILITY
DOI:
https://doi.org/10.22159/ijap.2024v16i2.49848Keywords:
Cocrystals, Cocrystals Cilnidipine, Cilnidipine Nicotinamide, Liquid-assisted grinding, Solubility enhancement, Green, SustainableAbstract
Objective: Improving the solubility of poorly water-soluble drugs has always been a challenge in drug development. This study aimed to enhance the aqueous solubility of a poorly water-soluble drug, Cilnidipine, by cocrystallisation method using liquid-assisted grinding (LAG) technique with Nicotinamide as the coformer. The study also aimed to understand the mechanism of cocrystal formation by quantum mechanical calculations.
Methods: The Cilnidipine-Nicotinamide cocrystals were prepared in various stoichiometric ratios using the liquid-assisted grinding (LAG) technique. The cocrystals obtained were characterised by vibrational spectroscopy, thermal methods such as differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and surface morphology by field emission scanning electron microscopy (FE-SEM). The cocrystals were evaluated for saturation solubility, and the mechanistic study of cocrystal formation was performed using the Gaussian 09 software package.
Results: FT-IR spectra of the formulated cocrystal indicated the intermolecular hydrogen bond formation between-N-H of Nicotinamide and the nitro group of Cilnidipine. DSC analysis showed a single endotherm at 96.76 °C, PXRD patterns were different from that of the reactants, and FE-SEM analysis revealed the changes in the surface morphology of the obtained cocrystal. The prepared cocrystal showed a 26.36-fold enhancement in the aqueous solubility of Cilnidipine. The DFT study demonstrated the formation of a strong intermolecular hydrogen bonding between the nitro-oxygen atom of Cilnidipine and the amide hydrogen atom of Nicotinamide in cocrystal formed.
Conclusion: This study highlights the potential of the liquid-assisted grinding method for preparing cocrystals as a sustainable and reliable approach to address the challenges posed by poorly water-soluble drugs.
Downloads
References
Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20. doi: 10.1023/a:1016212804288, PMID 7617530.
Tharik AAMS, Meyyanathan SN. Recent patents of pharmaceutical co-crystals: product development on anti-cancer drugs and beyond. Recent Pat Anticancer Drug Discov. 2023;18(3):246-67. doi: 10.2174/1574892817666220913151252, PMID 36100994.
Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950-67. doi: 10.1021/cg900129f, PMID 19503732.
Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;12(5):2147-52. doi: 10.1021/cg3002948.
Hatta T, Takeda K, Shiotsu Y, Sugishita C, Adachi T, Kimura T. Switching to an L/N-type calcium channel blocker shows renoprotective effects in patients with chronic kidney disease: the kyoto cilnidipine study. J Int Med Res. 2012 Aug;40(4):1417-28. doi: 10.1177/147323001204000420, PMID 22971493.
Kumar V, Agarwal S, Saboo B, Makkar B. RSSDI guidelines for the management of hypertension in patients with diabetes mellitus. Int J Diabetes Dev Ctries. 2022;42(4)Suppl 1:1-30. doi: 10.1007/s13410-022-01143-7, PMID 36536953.
Kauser AS, Unnisa H, Namreen A, Saba A, Ansari JA. The impact of antihypertensive drug therapy in patients with chronic kidney disease: a prospective observational cohort study. Int J Pharm Pharm Sci. 2019 Nov;11(12):10-5. doi: 10.22159/ijpps.2019v11i12.35659.
Ramya R, Kaladharan A. Evaluation of renoprotective effect of cilnidipine in patients with mild to moderate hypertension and type 2 diabetes mellitus-a prospective study. Asian J Pharm Clin Res. 2021 Jan 5:144-6.
Pn R, ND. Formulation, development, and characterisation of cilnidipine-loaded solid lipid nanoparticles. Asian J Pharm Clin Res. 2018 Sep;11(9):120. doi: 10.22159/ajpcr.2018.v11i9.24666.
PubChem. PubChem compound summary for CID 5282138, Cilnidipine. Bethesda: National Library of Medicine (US). National Center for Biotechnology Information; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cilnidipine. [Last accessed on 11 Nov 2023]
Chadha R, Sharma M, Haneef J. Multicomponent solid forms of felodipine: preparation, characterization, physicochemical and in vivo studies. J Pharm Pharmacol. 2017 Feb 20;69(3):254-64. doi: 10.1111/jphp.12685, PMID 28134976.
Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals–an opportunity for drug product enhancement. Expert Opin Drug Deliv. 2009 Apr;6(4):333-41. doi: 10.1517/17425240902828304, PMID 19348603.
Cruz Cabeza AJ. Acid–base crystalline complexes and the pKa rule. Cryst Eng Comm. 2012;14(20):6362. doi: 10.1039/c2ce26055g.
Saraf GJ, Burade KKB, Gonjari ID, Hosmani AH, Pawar AA. A review on advances in pharmaceutical co-crystal preparation routes, intellectual property perspective and regulatory aspects. Int J Curr Pharm Sci 2022;14(5):4-12. doi: 10.22159/ijcpr.2022v14i5.2038.
Singh M, Barua H, Jyothi VGSS, Dhondale MR, Nambiar AG, Agrawal AK. Cocrystals by design: a rational coformer selection approach for tackling the API problems. Pharmaceutics. 2023 Apr;15(4):1161. doi: 10.3390/pharmaceutics15041161, PMID 37111646.
Raghuram M, Alam MS, Prasad M, Khanduri CH. Pharmaceutical cocrystal of prulifloxacin with nicotinamide. Int J Pharm Pharm Sci. 2014 Oct 1;6(10):180-4.
Fukte S, Wagh PM, Rawat S. Conformer selection: an important tool in cocrystal formation. Int J Pharm Pharm Sci. 2014 Jul;6(7):9-14.
Bidhuri N, Padhi S. Review on comprehensive description of development and assessment of co-crystal drug delivery system. Int J App Pharm. 2023 Sep;15(5):10-6. doi: 10.22159/ijap.2023v15i5.48579.
Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. In: Berlin, Heidelberg: Springer; 2005. p. 41-70. doi: 10.1007/b100995.
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P. Recent advances in pharmaceutical cocrystals: from bench to market. Front Pharmacol. 2021 Nov;12:780582. doi: 10.3389/fphar.2021.780582, PMID 34858194.
Li F, Zheng Z, Xia S, Yu L. Synthesis, co-crystal structure, and DFT calculations of a multicomponent co-crystal constructed from 1H-Benzotriazole and Tetrafluoroterephthalic acid. J Mol Struct. 2020 Nov;1219:128480. doi: 10.1016/j.molstruc.2020.128480.
Sopyan I, Gozali D, Megantara S, Wahyuningrum R, Sunan Ks I. Review: an effort to increase the solubility and dissolution of active pharmaceutical ingredients. Int J App Pharm. 2022 Jan 7;14(1):22-7. doi: 10.22159/ijap.2022v14i1.43431.
Olori A, Di Pietro P, Campopiano A. Preparation of UltraPure KBr pellet: new method for FTIR quantitative analysis. Int J Sci Acad Res. 2021 Feb;2(2):1015-20.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian 09. Gaussian, Inc. Wallingford CT; 2016.
Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: integrated platform of small molecules and biological activities. Elsevier; 2008. p. 217-41.
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011 Dec;3(1):33. doi: 10.1186/1758-2946-3-33, PMID 21982300.
Weinhold F, Landis CR. Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract. 2001;2(2):91-104. doi: 10.1039/B1RP90011K.
Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. NY: John Wiley & Sons, Inc; 2005. p. 80-107.
Lu E, Rodriguez Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008;10(6):665. doi: 10.1039/b801713c.
Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2013 Jan;30(1):70-80. doi: 10.1007/s11095-012-0850-1, PMID 22907418.
Maddileti D, Jayabun SK, Nangia A. Soluble cocrystals of the xanthine oxidase inhibitor febuxostat. Cryst Growth Des. 2013 Jul;13(7):3188-96. doi: 10.1021/cg400583z.
Padrela L, De Azevedo EG, Velaga SP. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture. Drug Dev Ind Pharm. 2012 Aug;38(8):923-9. doi: 10.3109/03639045.2011.633263, PMID 22092083.
Kuminek G, Cao F, Bahia De Oliveira Da Rocha A, Gonçalves Cardoso S, Rodriguez Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. 2016 Jun;101:143-66. doi: 10.1016/j.addr.2016.04.022, PMID 27137109.
Allen FH, Baalham CA, Lommerse JPM, Raithby PR, Sparr E. Hydrogen-bond acceptor properties of nitro-O atoms: a combined crystallographic database and ab initio molecular orbital study. Acta Crystallogr B Struct Sci. 1997 Dec;53(6):1017-24. doi: 10.1107/S0108768197010239.
Myshakina NS, Ahmed Z, Asher SA. Dependence of amide vibrations on hydrogen bonding. J Phys Chem B. 2008 Sep;112(38):11873-7. doi: 10.1021/jp8057355, PMID 18754632.
Published
How to Cite
Issue
Section
Copyright (c) 2024 RENJISH CHERUKKOTH, SIBI P. ITTIYAVIRAH, JYOTI HARINDRAN, SUDHAKARAN NAIR C. R.
This work is licensed under a Creative Commons Attribution 4.0 International License.