A REVIEW ON DEVELOPMENT OF COLON TARGETED DRUG DELIVERY SYSTEM

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49293

Keywords:

Colon, Inflammatory bowel disease, Polymers, Colorectal, Cancer, Nanoparticles, Target, Drug delivery

Abstract

The purpose of this review was to select a promising drug delivery system for colon diseases. This review covers the development of Colon Targeted Drug Delivery System (CTDDS) using 36 y (1986-2022) data from various research and review articles. All fig. designed using by BioRender website. vThe colon-targeted drug delivery systems developed for the specific site drug delivery which applied for both local and systemic actions of the drug; since the drug targeted to be release within the colon, the unwanted systemic side effects are reduced along with it. Systemic side effects include organ damage, respiratory diseases and, cardiovascular damage and other illnesses. Colon-targeted drug delivery system used in the treatment of diseases in the colon, including ulcerative colitis, irritable bowel syndrome and colorectal cancer. The benefit of colon-targeted drug delivery besides the reduction of side effects also include protection from premature drug release or burst in the stomach or small intestine before reaching the colon. For the development of drugs with such benefits and advantages, drug delivery systems and approaches have used for Colon targeted drug delivery systems, varying from conventional colon-targeting drug delivery systems to novel approaches for Colon-targeted drug delivery systems. Conventional drug delivery includes the use of prodrugs, pH-dependent, time-dependent, matrix-based systems, polysaccharides-derived systems, and bio-adhesive system while novel approaches include types such as port system, pulsincap system, pressure-controlled system, osmotic controlled system, CODES, and the newest approach wish is the use of nanotechnology in colon targeted drug delivery. In this research both techniques reviewed, and their types discussed as well. The limitation of their uses and the advantage of each system discussed with a breakdown of the different mechanisms used to formulate such systems. A successful colon targeting delivery can release the drug to a specific segment in colon due to presence of different colonic enzymes formed by microorganisms that metabolize drug carrier linkage. Use of combined approaches i.e., conventional systems and newer approaches may be the best way to cure colon diseases using an optimized colon drug delivery system.

Downloads

Download data is not yet available.

References

Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25(2):79-87. doi: 10.5001/omj.2010.24, PMID 22125706.

Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235(1-2):1-15. doi: 10.1016/s0378-5173(02)00004-2, PMID 11879735.

Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2-11. doi: 10.4103/2230-973X.96920, PMID 23071954.

Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16(4):731-41. doi: 10.1208/s12249-015-0350-9, PMID 26070545.

Nicholas ME, Panaganti S, Prabakaran L, Jayveera K. Novel colon-specific drug delivery system: a review. Int J Pharm Sci Res. 2011;2(10):2545.

Hua S. Physiological and pharmaceutical considerations for rectal drug formulations. Front Pharmacol. 2019;10:1196. doi: 10.3389/fphar.2019.01196, PMID 31680970.

Chaubey P, Momin M, Sawarkar S. Significance of ligand-anchored polymers for drug targeting in the treatment of colonic disorders. Front Pharmacol. 2019;10:1628. doi: 10.3389/fphar.2019.01628, PMID 32161536.

Mehta TJ, Patel A, Patel MR, Patel N. Need of colon specific drug delivery system: review on primary and novel approaches. IJPRD. 2011;3(1):134-53.

Wood JD. Normal anatomy, digestion, absorption. Adult short bowel syndrome. Elsevier; 2019. p. 1-16.

Stillhart C, Vucicevic K, Augustijns P, Basit AW, Batchelor H, Flanagan TR. Impact of gastrointestinal physiology on drug absorption in special populations-an UNGAP review. Eur J Pharm Sci. 2020;147:105280. doi: 10.1016/j.ejps.2020.105280, PMID 32109493.

Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. The use of formulation technology to assess regional gastrointestinal drug absorption in humans. Eur J Pharm Sci. 2004;21(2-3):179-89. doi: 10.1016/j.ejps.2003.10.003, PMID 14757489.

Humphries A, Wright NA. Colonic crypt organization and tumorigenesis. Nat Rev Cancer. 2008;8(6):415-24. doi: 10.1038/nrc2392, PMID 18480839.

Song L, Li Y. The role of stem cell DNA methylation in colorectal carcinogenesis. Stem Cell Rev Rep. 2016;12(5):573-83. doi: 10.1007/s12015-016-9672-6, PMID 27402365.

Chandrasinghe PC. Basics in molecular evolution of colorectal cancer and their implications for the surgeon: is it a ’big-bang’ or a ’survival of the toughest’? SLJS. 2018;36(2):18-21.

Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B. 2018;8(2):147-64. doi: 10.1016/j.apsb.2018.01.013, PMID 29719776.

Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129. doi: 10.3390/pharmaceutics11030129, PMID 30893852.

Nakamura N, Lin HC, McSweeney CS, Mackie RI, Gaskins HR. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol. 2010;1:363-95. doi: 10.1146/annurev.food.102308.124101, PMID 22129341.

Noh K, Kang Y, Nepal MR, Jeong KS, Oh DG, Kang MJ. Role of intestinal microbiota in baicalin-induced drug interaction and its pharmacokinetics. Molecules. 2016;21(3):337. doi: 10.3390/molecules21030337, PMID 26978333.

Sinha VR, Kumria R. Colonic drug delivery: prodrug approach. Pharm Res. 2001;18(5):557-64. doi: 10.1023/a:1011033121528, PMID 11465408.

Van den Mooter G, Samyn C, Kinget R. Azo polymers for colon-specific drug delivery. Int J Pharm. 1992;87(1-3):37-46. doi: 10.1016/0378-5173(92)90225-Q.

Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004;11(2):129-48. doi: 10.1080/10717540490280778.

Akala EO, Kopeckova P, Kopecek J. Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials. 1998;19(11-12):1037-47. doi: 10.1016/s0142-9612(98)00023-4, PMID 9692802.

Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571-7. doi: 10.1136/gut.48.4.571, PMID 11247905.

Gupta A, Mittal A, Gupta AK. Colon-targeted drug delivery systems–a review. Russ J Biopharm. 2011;3(4):3-13.

Kim H, Lee Y, Yoo H, Kim J, Kong H, Yoon JH. Synthesis and evaluation of sulfate conjugated metronidazole as a colon-specific prodrug of metronidazole. J Drug Target. 2012;20(3):255-63. doi: 10.3109/1061186X.2011.639024, PMID 22118327.

Vale N, Ferreira A, Matos J, Fresco P, Gouveia MJ. Amino acids in the development of prodrugs. Molecules. 2018;23(9):2318. doi: 10.3390/molecules23092318, PMID 30208629.

Filho P, Roberto, Polli M, Barberato Filho S, Garcia M, Ferreira E. Prodrugs available on the Brazilian pharmaceutical market and their corresponding bioactivation pathways. Braz J Pharm Sci. 2010;46(10):1590.

Rubinstein A. Microbially controlled drug delivery to the colon. Biopharm Drug Dispos. 1990;11(6):465-75. doi: 10.1002/bdd.2510110602, PMID 2207298.

Hita V, Singh R, Jain SK. Colonic targeting of metronidazole using azo aromatic polymers: development and characterization. Drug Deliv. 1997;4(1):19-22. doi: 10.3109/10717549709033183.

Roos AA, Edlund U, Sjoberg J, Albertsson AC, Stalbrand H. Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by β-mannanase. Biomacromolecules. 2008;9(8):2104-10. doi: 10.1021/bm701399m, PMID 18590309.

Lee SH, Bajracharya R, Min JY, Han JW, Park BJ, Han HK. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12(1):68. doi: 10.3390/pharmaceutics12010068, PMID 31952340.

McConnell EL, Short MD, Basit AW. An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man. Journal of Controlled Release. 2008;130(2):154-60. doi: 10.1016/j.jconrel.2008.05.022.

Khan MZI, Prebeg Z, Kurjakovic N. A pH-dependent colon-targeted oral drug delivery system using methacrylic acid copolymers: I. Journal of Controlled Release. 1999;58(2):215-22. doi: 10.1016/S0168-3659(98)00151-5.

Reddy RD, Malleswari K, Prasad G, Pavani G. Colon targeted drug delivery system: a review. Int J Pharm Sci Res. 2013;4(1):42. doi: 10.13040/IJPSR.0975-8232.4(1).42-54.

Abdullah GZ, Abdulkarim MF, Chitneni M, Mutee AF, Ameer OZ, Salman IM. Preparation and in vitro evaluation of mebeverine HCl colon-targeted drug delivery system. Pharm Dev Technol. 2011;16(4):331-42. doi: 10.3109/10837451003739255, PMID 20429815.

Acharya S, Pandey J, Joshi HP, Parajuli G, Poudel N, Poudel S. Formulation and evaluation of gastro retentive floating tablet of amlodipine besylate using natural organic polymers. Int J App Pharm. 2022;14(4):227-34. doi: 10.22159/ijap.2022v14i4.44600.

Vemula SK, Veerareddy PR. Colon specific controlled release matrix tablets of flurbiprofen: development and characterization. Asian J Pharm Clin Res. 2012;5(4):92-6.

Kwon GS. Polymeric drug delivery systems. CRC Press; 2005. doi: 10.1201/9780849348129.

Patel MM, Shah TJ, Amin AF, Shah NN. Design, development and optimization of a novel time and pH-dependent colon-targeted drug delivery system. Pharm Dev Technol. 2009;14(1):62-9. doi: 10.1080/10837450802409412, PMID 18802844.

Sarangi MK, Rao MEB, Parcha V. Smart polymers for colon targeted drug delivery systems: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2021;70(16):1130-66. doi: 10.1080/00914037.2020.1785455.

Qureshi AM, Momin M, Rathod S, Dev A, Kute C. Colon targeted drug delivery system: a review on current approaches. IJPBR. 2013;1(4):130-47. doi: 10.30750/ijpbr.1.4.24.

Gaohua L, Miao X, Dou L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol. 2021 Sep;17(9):1103-24. doi: 10.1080/17425255.2021.1951223, PMID 34253134.

Ravi V, Siddaramaiah, Pramod Kumar TM. Influence of natural polymer coating on novel colon targeting drug delivery system. J Mater Sci Mater Med. 2008;19(5):2131-6. doi: 10.1007/s10856-007-3155-x, PMID 17999035.

Kumar M, Ali A, Kaldhone P, Shirode A, Kadam VJ. Report on pharmaceutical approaches to colon-targeted drug delivery systems. J Pharm Res. 2010;3(3):157-9.

Ahmad MZ, Akhter S, Ahmad I, Singh A, Anwar M, Shamim M. In vitro and in vivo evaluation of Assam bora rice starch-based bioadhesive microsphere as a drug carrier for colon targeting. Expert Opin Drug Deliv. 2012;9(2):141-9. doi: 10.1517/17425247.2012.633507, PMID 22236045.

Ramadan AA, Elbakry AM, Esmaeil AH, Khaleel SA. Pharmaceutical and pharmacokinetic evaluation of novel rectal mucoadhesive hydrogels containing tolmetin sodium. J Pharm Investig. 2018;48(6):673-83. doi: 10.1007/s40005-017-0365-1, PMID 30595939.

McGirr ME, McAllister SM, Peters EE, Vickers AW, Parr AF, Basit AW. The use of the InteliSite companion device to deliver mucoadhesive polymers to the dog colon. Eur J Pharm Sci. 2009;36(4-5):386-91. doi: 10.1016/j.ejps.2008.11.007, PMID 19063965.

Varum FJ, Veiga F, Sousa JS, Basit AW. Mucoadhesive platforms for targeted delivery to the colon. Int J Pharm. 2011;420(1):11-9. doi: 10.1016/j.ijpharm.2011.08.006, PMID 21856393.

Liu H, Cai Z, Wang F, Hong L, Deng L, Zhong J. Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora. Adv Sci (Weinh). 2021;8(18):e2101619. doi: 10.1002/advs.202101619, PMID 34292669.

Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1-2):19-38. doi: 10.1016/s0378-5173(01)00720-7, PMID 11472812.

Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151-65. doi: 10.1016/s0168-3659(03)00126-3, PMID 12711440.

Das S, Deshmukh R, Jha AK. Role of natural polymers in the development of multiparticulate systems for colon drug targeting. Syst Rev Pharm. 2010;1(1):79-85. doi: 10.4103/0975-8453.59516.

Ibrahim IM. Advances in polysaccharide-based oral colon-targeted delivery systems: the journey so far and the road ahead. Cureus. 2023;15(1):e33636. doi: 10.7759/cureus.33636, PMID 36788847.

Ashford M, Fell JT, Attwood D, Woodhead PJ. An in vitro investigation into the suitability of pH-dependent polymers for colonic targeting. International Journal of Pharmaceutics. 1993;91(2-3):241-5. doi: 10.1016/0378-5173(93)90344-F.

Gazzaniga A, Cerea M, Cozzi A, Foppoli A, Maroni A, Zema L. A novel injection-molded capsular device for oral pulsatile delivery based on swellable/erodible polymers. AAPS PharmSciTech. 2011;12(1):295-303. doi: 10.1208/s12249-011-9581-6, PMID 21267684.

Hussan SD. A review on recent advances of enteric coating. IOSRPHR. 2012;2(6):5-11. doi: 10.9790/3013-2610511.

Takaya T. Importance of dissolution process on systemic availability of drugs delivered by colon delivery system. Journal of Controlled Release. 1998;50(1-3):111-22. doi: 10.1016/S0168-3659(97)00123-5.

Bansode AS, Athare AB, Kasture VS, Kendre P. Colon targeted drug delivery system: an overview. Int J Pharm Sci Res. 2012;12(4):2049-64.

Singh CK, Saxena S, Yadav M, Samson A. A review on novel approaches for colon targeted drug delivery systems. PharmaTutor 2018;6(7). doi: 10.29161/PT.v6.i7.2018.11.

Rangari Nalanda T, Puranik Prashant K. Review on recent and novel approaches to colon targeted drug delivery systems. Int J Pharm Pharm Sci. 2015;3(1):167-86.

Theeuwes F, Guittard GV, Wong PS. Delivery of drug to colon by oral disage form. Google Patents. 1990.

Philip AK, Pathak K. Osmotic flow through asymmetric membrane: a means for controlled delivery of drugs with varying solubility. AAPS PharmSciTech. 2006;7(3):56. doi: 10.1208/pt070356, PMID 17025237.

Hmar EBL, Paul S, Zothantluanga JH, Sharma HK. Ulcerative colitis: a review on drug delivery strategies. Sci Vis. 2020;20(1):1-15. doi: 10.33493/scivis.20.01.01.

Ankush S, Kapil K, Amritpal S. A review on novel approaches for colon targeted drug delivery system. JPCBS. 2014;4(2). doi: 10.5001/omj.2010.24.

Abraham S, Srinath M. Development of modified Pulsincap drug delivery system of metronidazole for drug targeting. Indian J Pharm Sci. 2007;69(1). doi: 10.4103/0250-474X.32102.

Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16(4):731-41. doi: 10.1208/s12249-015-0350-9, PMID 26070545.

Oprea M, Voicu SI. Recent advances in applications of cellulose derivatives-based composite membranes with hydroxyapatite. Materials (Basel). 2020 May 29;13(11):2481. doi: 10.3390/ma13112481, PMID 32486050.

Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73(3):373-84. doi: 10.1016/j.ejpb.2009.08.002, PMID 19679184.

Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol. 2016;82:687-95. doi: 10.1016/j.ijbiomac.2015.09.052, PMID 26464131.

Juturi KR, Veera M, Jyothsna, Sheikuduman SM, Chetty MC. Review on: pulsatile drug delivery systems. J Pharm Sci Res. 2009;1(4):109-15.

Watanabe S, Kawai H, Katsuma M, Fukui M. Colon-specific drug release system. Google Patents; 2002.

Katsuma M, Watanabe S, Takemura S, Sako K, Sawada T, Masuda Y. Scintigraphic evaluation of a novel colon-targeted delivery system (CODES) in healthy volunteers. J Pharm Sci. 2004;93(5):1287-99. doi: 10.1002/jps.20063, PMID 15067705.

Qelliny M, Aly U, Elgarhy O, Khaled K. Colon drug delivery systems for the treatment of inflammatory bowel disease. Journal of Advanced Biomedical and Pharmaceutical Sciences. 2019;2(4):164-84. doi: 10.21608/jabps.2019.14835.1052.

Ma X, Williams III RO. Polymeric nanomedicines for poorly soluble drugs in oral delivery systems: an update. J Pharm Investig. 2018;48(1):61-75. doi: 10.1007/s40005-017-0372-2.

Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Ther. 2005;315(1):196-202. doi: 10.1124/jpet.105.088146, PMID 15980057.

Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788-93. doi: 10.1023/a:1011032328064, PMID 11474782.

Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv. 2012;9(11):1393-407. doi: 10.1517/17425247.2012.730517, PMID 23036075.

Fan Y, Zhang Q. Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci. 2013;8(2):81-7. doi: 10.1016/j.ajps.2013.07.010.

Gogoi P, Kaur G, Singh NK. Nanotechnology for colorectal cancer detection and treatment. World J Gastroenterol. 2022 Dec 14;28(46):6497-511. doi: 10.3748/wjg.v28.i46.6497, PMID 36569271, PMCID PMC9782835.

Banerjee A, Pathak S, Subramanium VD, GD, Murugesan R, Verma RS. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov Today. 2017;22(8):1224-32. doi: 10.1016/j.drudis.2017.05.006, PMID 28545838.

Naeem M, Awan UA, Subhan F, Cao J, Hlaing SP, Lee J. Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res. 2020;43(1):153-69. doi: 10.1007/s12272-020-01219-0, PMID 31989477.

Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1-8. doi: 10.1016/j.ejpb.2008.12.013, PMID 19348015.

Matsuda KI, Takaya T, Shimoji F, Muraoka M, Yoshikawa Y, Takada K. Effect of food intake on the delivery of fluorescein as a model drug in colon delivery capsule after oral administration to beagle dogs. J Drug Target. 1996;4(2):59-67. doi: 10.3109/10611869609046263, PMID 8894965.

Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167-77. doi: 10.1016/j.jconrel.2014.03.039, PMID 24685705.

Ji C, Xu H, Wu W. In vitro evaluation and pharmacokinetics in dogs of guar gum and Eudragit FS30D-coated colon-targeted pellets of indomethacin. J Drug Target. 2007;15(2):123-31. doi: 10.1080/10611860601143727, PMID 17365283.

Naeem M, Cao J, Choi M, Kim WS, Moon HR, Lee BL. Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. Int J Nanomedicine. 2015;S87816:4565-80. doi: 10.2147/IJN.

Naeem M, Bae J, Oshi MA, Kim MS, Moon HR, Lee BL. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int J Nanomedicine. 2018;13:1225-40. doi: 10.2147/IJN.S157566, PMID 29535519.

Griffiths PC, Cattoz B, Ibrahim MS, Anuonye JC. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur J Pharm Biopharm. 2015;97(A):218-22. doi: 10.1016/j.ejpb.2015.05.004, PMID 25986588.

Lieleg O, Vladescu I, Ribbeck K. Characterization of particle translocation through mucin hydrogels. Biophys J. 2010;98(9):1782-9. doi: 10.1016/j.bpj.2010.01.012, PMID 20441741.

Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res. 2018;41(2):111-29. doi: 10.1007/s12272-017-0995-x, PMID 29214601.

Shi LL, Xie H, Lu J, Cao Y, Liu JY, Zhang XX. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharm. 2016;13(8):2667-76. doi: 10.1021/acs.molpharmaceut.6b00226, PMID 27379550.

Sim T, Lim C, Hoang NH, Joo H, Lee JW, Kim DW. Nanomedicines for oral administration based on diverse nanoplatform. J Pharm Investig. 2016;46:351-62. doi: 10.1007/s40005-016-0255-y.

Tahara K, Samura S, Tsuji K, Yamamoto H, Tsukada Y, Bando Y. Oral nuclear factor-κB decoy oligonucleotides delivery system with chitosan modified poly(D,L-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials. 2011;32(3):870-8. doi: 10.1016/j.biomaterials.2010.09.034, PMID 20934748.

Frede A, Neuhaus B, Klopfleisch R, Walker C, Buer J, Müller W. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release. 2016;222:86-96. doi: 10.1016/j.jconrel.2015.12.021, PMID 26699423.

Niebel W, Walkenbach K, Beduneau A, Pellequer Y, Lamprecht A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J Control Release. 2012;160(3):659-65. doi: 10.1016/j.jconrel.2012.03.004, PMID 22445727.

Chen WL, Yuan ZQ, Liu Y, Yang SD, Zhang CG, Li JZ. Liposomes coated with N-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro. Int J Nanomedicine. 2016;11:325-36. doi: 10.2147/IJN.S95540, PMID 26855571.

Naeem M, Oshi MA, Kim J, Lee J, Cao J, Nurhasni H. pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. Nanomedicine. 2018;14(3):823-34. doi: 10.1016/j.nano.2018.01.003, PMID 29353017.

Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75-85. doi: 10.1016/j.addr.2008.09.008, PMID 19135107.

Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA. 2009;106(46):19268-73. doi: 10.1073/pnas.0905998106, PMID 19901335.

Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci. 2010;10(12):1473-83. doi: 10.1002/mabi.201000137, PMID 20857389.

Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4(149):149ra119. doi: 10.1126/scitranslmed.3003594, PMID 22932224.

Talaei F, Atyabi F, Azhdarzadeh M, Dinarvand R, Saadatzadeh A. Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies. Eur J Pharm Sci. 2013;49(4):712-22. doi: 10.1016/j.ejps.2013.04.031, PMID 23665411.

Piechota Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(7):605-20. doi: 10.1007/s00210-014-0985-1, PMID 24798211.

Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology. 2012;143(4):1027-36. doi: 10.1053/j.gastro.2012.06.043.

Vong LB, Yoshitomi T, Matsui H, Nagasaki Y. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials. 2015;55:54-63. doi: 10.1016/j.biomaterials.2015.03.037, PMID 25934452.

Zhang Q, Tao H, Lin Y, Hu Y, An H, Zhang D. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials. 2016;105:206-21. doi: 10.1016/j.biomaterials.2016.08.010, PMID 27525680.

Vong LB, Mo J, Abrahamsson B, Nagasaki Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. J Control Release. 2015;210:19-25. doi: 10.1016/j.jconrel.2015.05.275, PMID 25998050.

Si XY, Merlin D, Xiao B. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease. World J Gastroenterol. 2016;22(34):7718-26. doi: 10.3748/wjg.v22.i34.7718, PMID 27678353.

Dutta D, Chakraborty A, Mukherjee B, Gupta S. Aptamer-conjugated apigenin nanoparticles to target colorectal carcinoma: a promising safe alternative of colorectal cancer chemotherapy. ACS Appl Bio Mater. 2018;1(5):1538-56. doi: 10.1021/acsabm.8b00441, PMID 34996205.

Xiao B, Xu Z, Viennois E, Zhang Y, Zhang Z, Zhang M. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther. 2017;25(7):1628-40. doi: 10.1016/j.ymthe.2016.11.020, PMID 28143741.

Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4(1):1867. doi: 10.1038/ncomms2886, PMID 23695661.

Patil SC, Tagalpallewar AA, Kokare CR. Natural anti-proliferative agent loaded self-microemulsifying nanoparticles for potential therapy in oral squamous carcinoma. J Pharm Investig. 2019;49:527-41.

Byeon JC, Ahn JB, Jang WS, Lee SE, Choi JS, Park JS. Recent formulation approaches to oral delivery of herbal medicines. J Pharm Investig. 2019;49:17-26.

Yang C, Merlin D. Can naturally occurring nanoparticle-based targeted drug delivery effectively treat inflammatory bowel disease? Expert Opin Drug Deliv. 2020 Jan;17(1):1-4. doi: 10.1080/17425247.2020.1698543, PMID 31770040, PMCID PMC6980994.

Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321-40. doi: 10.1016/j.biomaterials.2016.06.018, PMID 27318094.

Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25(7):1641-54. doi: 10.1016/j.ymthe.2017.01.025, PMID 28274798.

Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345-57. doi: 10.1038/mt.2013.64, PMID 23752315.

Naeem M, Choi M, Cao J, Lee Y, Ikram M, Yoon S. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des Devel Ther. 2015;9:3789-99. doi: 10.2147/DDDT.S88672, PMID 26229440.

Ma Y, Fuchs AV, Boase NR, Rolfe BE, Coombes AG, Thurecht KJ. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: evaluation of their potential for colon-specific delivery. Eur J Pharm Biopharm. 2015;94:393-403. doi: 10.1016/j.ejpb.2015.06.014, PMID 26117186.

Reineke JJ, Cho DY, Dingle YT, Morello III AP, Jacob J, Thanos CG. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres. Proc Natl Acad Sci USA. 2013;110(34):13803-8. doi: 10.1073/pnas.1305882110, PMID 23922388.

Imperiale JC, Sosnik A. Nanoparticle-in-microparticle delivery systems (NiMDS): production, administration routes and clinical potential. J Biomater Tissue Eng. 2013;3(1):22-38. doi: 10.1166/jbt.2013.1064.

Lee YS, Johnson PJ, Robbins PT, Bridson RH. Production of nanoparticles-in-microparticles by a double emulsion method: a comprehensive study. Eur J Pharm Biopharm. 2013;83(2):168-73. doi: 10.1016/j.ejpb.2012.10.016, PMID 23153669.

Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release. 2019;295:174-86. doi: 10.1016/j.jconrel.2018.12.017, PMID 30557649.

Farris E, Brown DM, Ramer Tait AE, Pannier AK. Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J Control Release. 2017;249:150-61. doi: 10.1016/j.jconrel.2017.01.035, PMID 28153762.

Saffran M, Bedra C, Kumar GS, Neckers DC. Vasopressin: a model for the study of effects of additives on the oral and rectal administration of peptide drugs. J Pharm Sci. 1988;77(1):33-8. doi: 10.1002/jps.2600770107, PMID 3346821.

Saffran M, Kumar GS, Savariar C, Burnham JC, Williams F, Neckers DC. A new approach to the oral administration of insulin and other peptide drugs. Science. 1986;233(4768):1081-4. doi: 10.1126/science.3526553, PMID 3526553.

Shete NA, Mohan R, Kotame R, Gore S, Tagad R. Changing scenario of packaging in pharmaceutical industry. World J Pharm Res. 2020;9(1):1786.

Published

07-03-2024

How to Cite

MUHAMMED, R. A., MOHAMMED, S., VISHT, S., & YASSEN, A. O. (2024). A REVIEW ON DEVELOPMENT OF COLON TARGETED DRUG DELIVERY SYSTEM. International Journal of Applied Pharmaceutics, 16(2), 12–27. https://doi.org/10.22159/ijap.2024v16i2.49293

Issue

Section

Review Article(s)