REVOLUTIONIZING THERAPEUTIC DELIVERY: DIOSGENIN-LOADED SOLID LIPID NANOPARTICLES UNLEASH ADVANCED CARRIERS

Authors

  • RAMSHA ASLAM Faculty of Pharmacy, IFTM University, Lodhipur-Rajput, Moradabad-244102, Uttar Pradesh, India. Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur, U. S. Nagar, India https://orcid.org/0000-0003-1359-0145
  • VARSHA TIWARI Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad-244102, Uttar Pradesh, India https://orcid.org/0000-0002-2293-8943
  • PRASHANT UPADHYAY School of Pharmaceutical Sciences, IFTM University, Lodhipur-Rajput, Moradabad-244102, Uttar Pradesh, India
  • ABHISHEK TIWARI Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad-244102, Uttar Pradesh, India https://orcid.org/0000-0002-2293-8943

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49306

Keywords:

Diosgenin, Solid lipid nanoparticles, Formulation optimization, Drug release

Abstract

Objective: The pharmaceutical industry has paid a lot of attention to solid lipid nanoparticles (SLN) because they show promise as drug delivery vehicles. The purpose of this research was to create and characterize SLN loaded with Diosgenin.

Methods: To create SLN, the natural bioactive component diosgenin was encapsulated in a solid lipid matrix of compritol ATO 888. A modified solvent emulsification-evaporation process was used to create the SLN. Using a Box-Behnken Design (BBD), we were able to identify the optimal values for the drug-to-solid lipid ratio, surfactant concentration, and ultrasonication period that constitute an effective formulation.

Results: It was found that the improved formulation had particle sizes of 170.96 nm, polydispersity indices (PDI) of 0.231, and entrapment efficiencies of 64.549±0.553% %. The zeta potential value of -40.2 mV was indicative of a steady dispersion. The average particle size of the SLN was measured to be 103.1429 nm, and their spherical morphology was validated by scanning electron microscopy (SEM) imaging. The optimized formulation did not undergo any chemical changes, as shown by differential scanning calorimetry (DSC) testing. The in vitro drug release investigation showed that the SLN released Diosgenin continuously for 28 h.

Conclusion: The optimized formulation of SLN, achieved through the BBD, offers a promising strategy to improve drug solubility while ensuring controlled drug release and long-term storage stability.

Downloads

Download data is not yet available.

References

Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005;45(3-4):167-73. doi: 10.1016/ j.colsurfb.2005.08.005, PMID 16198092.

Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54Suppl 1:S131-55. doi: 10.1016/s0169-409x(02)00118-7, PMID 12460720.

Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochem Rev. 2010;9(3):425-74. doi: 10.1007/s11101-010-9183-z, PMID 20835386.

Jesus M, Martins AP, Gallardo E, Silvestre S. Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Methods Chem. 2016;2016:4156293. doi: 10.1155/2016/4156293, PMID 28116217.

Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol. 2020;198:105575. doi: 10.1016/j.jsbmb.2019.105575, PMID 31899316.

Fang YW, Zhao JJ, He YZ, Li BG, Xu CJ. Study on the structure of two water-insoluble steroidal saponins of dioscorea. Acta Pharmacol Sin. 1982;17:388-91.

Li YM, He BJ, Liu ZY, Jin GS. Study on the water-soluble active ingredient of Dioscorea. J China Med Univ. 1979;8:14-6.

Liu CZ, Chang JH, Zhang L, Xue HF, Liu XG, Liu P. Preparation and evaluation of diosgenin nanocrystals to improve oral bioavailability. AAPS PharmSciTech. 2017;18(6):2067-76. doi: 10.1208/s12249-016-0684-y, PMID 27995466.

Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139-51. doi: 10.1016/j.ejps.2012.05.010, PMID 22664358.

Box GEP, Behnken DW. Some new three-level designs for the study of quantitative variables. Technometrics. 1960;2(4):455-75. doi: 10.1080/00401706.1960.10489912.

Chen L, Liu R, Liu C. Scanning electron microscopy: a potentially useful tool for the diagnosis of soft tissue masses. Exp Ther Med. 2013;5(1):172-4.

Papadopoulou V, Kosmidis K, Vlachou M. Comparative study of lipid and surfactant self-assembled nanoparticles using a hydrophilic drug as the active ingredient. Colloids Surf B Biointerfaces. 2014;113:325-32.

Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fiction release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23-36. doi: 10.1016/0168-3659(87)90034-4.

Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

Costa P, Sousa Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces. 2011;88(1):483-9. doi: 10.1016/j.colsurfb.2011.07.036, PMID 21831615.

Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of valdecoxib. Drug Dev Ind Pharm. 2006;32(8):911-8. doi: 10.1080/03639040600814676, PMID 16954103.

Nerella A, Raju BD, Aruna DM. Formulation, optimization and in vitro characterization of letrozole loaded solid lipid nanoparticles. Int J Pharm Sci Drug Res. 2014;6:183-8.

Huang ZR, Hua SC, Yang YL, Fang JY. Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin. 2008;29(9):1094-102. doi: 10.1111/j.1745-7254.2008.00829.x, PMID 18718178.

Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: optimization and in vivo studies. Drug Dev Ind Pharm. 2019;45(5):839-51. doi: 10.1080/03639045.2019.1576724, PMID 30702966.

Pokharkar V, Patil Gadhe A, Palla P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: in vivo pharmacokinetic and toxicity study. Biomed Pharmacother. 2017;94:150-64. doi: 10.1016/j.biopha.2017.07.067, PMID 28759752.

Agrawal M, Saraf S, Pradhan M, Patel RJ, Singhvi G, Ajazuddin AA. Design and optimization of curcumin-loaded nano lipid carrier system using box-Behnken design. Biomed Pharmacother. 2021;141:111919. doi: 10.1016/j.biopha.2021.111919, PMID 34328108.

Khan BH, Sandhya P. Palbociclib loaded solid lipid nanoparticles by box-Behnken design: solubility enhancement. Int J Pharm Sci Res. 2022;13:1241-50.

Schubert MA, Muller Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles-evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125-31. doi: 10.1016/s0939-6411(02)00130-3, PMID 12551713.

Schwarz C, Mehnert W, Lucks JS, Muller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release. 1994;30(1):83-96. doi: 10.1016/0168-3659(94)90047-7.

Lason E, Sikora E, Ogonowski J. Influence of process parameters on properties of nanostructured lipid carriers (NLC) formulation. Acta Biochim Pol. 2013;60(4):773-7. PMID 24432330.

Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb). 2005;85(5-6):415-20. doi: 10.1016/j.tube.2005.08.009, PMID 16256437.

Nikam S, Chavan M. Sharma PH solid lipid nanoparticles: a lipid-based drug delivery. IPP. 2014;2:365-76.

Attama AA, Reichl S, Muller Goymann CC. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm. 2008;355(1-2):307-13. doi: 10.1016/j.ijpharm.2007.12.007, PMID 18242022.

Kumar P, Bose PP. Targeted delivery of paromomycin to leishmania infected macrophage by hemoglobin tagged nanocarrier. J Appl Pharm. 2016;8:1-6.

Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ. Preparation and characterization of vinpocetine-loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1-2):179-85. doi: 10.1016/j.ijpharm.2010.05.005, PMID 20471464.

Srawan GY, Madhuri K. Formulation and evaluation of clozapine solid lipid nanoparticles with natural lipid. Drug Discov Ther. 2014;2:18-26.

Anuradha K, Senthil KM. Development of lacidipine-loaded nanostructured lipid carriers (NLCs) for bioavailability enhancement. Int J Pharm Res. 2014;2:50-7.

Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Res Int. 2013;2013:584549. doi: 10.1155/2013/584549, PMID 24228255.

Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM. Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Deliv. 2015;22(5):647-51. doi: 10.3109/10717544.2013.860502, PMID 24283392.

Yang SC, Zhu JB, Lu Y, Liang BW, Yang CZ. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16(5):751-7. doi: 10.1023/a:1018888927852, PMID 10350020.

Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys. 1972;57(11):4814-20. doi: 10.1063/1.1678153.

Joshi G, Tiwari A, Upadhyay P. Optimization and evaluation of piperine loaded herbosomes for their antioxidant and hepatoprotective potential. Asian J Chem. 2022;34(2):383-8. doi: 10.14233/ajchem.2022.23554.

Almeida AJ, Runge S, Müller RH. Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. International Journal of Pharmaceutics. 1997;149(2):255-65. doi: 10.1016/S0378-5173(97)04885-0.

Siekmann B, Westesen K. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids and Surfaces B: Biointerfaces. 1994;3(3):159-75. doi: 10.1016/0927-7765(94)80063-4.

Soma D, Attari Z, Reddy MS, Damodaram A, Koteshwara KBG. Solid lipid nanoparticles of irbesartan: preparation, characterization, optimization and pharmacokinetic studies. Braz J Pharm Sci. 2017;53(1):1-10. doi: 10.1590/s2175-97902017000115012.

Varshosaz J, Minayian M, Moazen E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J Liposome Res. 2010;20(2):115-23. doi: 10.3109/08982100903161456, PMID 19694503.

Abdelbary G, Fahmy RH. Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech. 2009;10(1):211-9. doi: 10.1208/s12249-009-9197-2, PMID 19277870.

Ghanbarzadeh S, Hariri R, Kouhsoltani M, Shokri J, Javadzadeh Y, Hamishehkar H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2015;136:1004-10. doi: 10.1016/j.colsurfb.2015.10.041, PMID 26579567.

Malewar N, Avachat M, Pokharkar V, Kulkarni S. Controlled release of ropinirole hydrochloride from a multiple barrier layer tablet dosage form: effect of polymer type on pharmacokinetics and IVIVC. AAPS PharmSciTech. 2013;14(3):1178-89. doi: 10.1208/s12249-013-0009-3, PMID 23897037.

Senthil P, Arivuchelvan A, Jagadeeswaran A, Subramanian N, Senthil C, Mekala P. Formulation, optimization and evaluation of enrofloxacin solid lipid nanoparticles for sustained oral delivery. Asian J Pharm Clin Res. 2015;8:231-6.

Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62-76. doi: 10.1208/s12249-010-9563-0, PMID 21174180.

Singh S, Kamal SS, Sharma A, Kaur D, Katual MK, Kumar R. Formulation and in vitro evaluation of solid lipid nanoparticles containing levosulpiride. TONMJ. 2017;4(1):17-29. doi: 10.2174/1875933501704010017.

Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-23. PMID 20524422.

Shetty C, Babubhai S, Pathan I. Development of valdecoxib topical gels-effect of formulation variables on the release of valdecoxib. Int J Pharm Pharm Sci. 2010;2:70-3.

Kar N, Chakraborty S, De AK, Ghosh S, Bera T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug-resistant Leishmania donovani amastigotes. Eur J Pharm Sci. 2017;104:196-211. doi: 10.1016/j.ejps.2017.03.046, PMID 28400285.

Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-Behnken design. Int J Nanomedicine. 2011;6:683-92. doi: 10.2147/IJN.S17386, PMID 21556343.

Thakkar HP, Desai JL, Parmar MP. Application of box-Behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil. J Drug Deliv Sci Technol. 2018;44:431-9.

Agrawal M, Saraf S, Pradhan M, Patel RJ, Singhvi G, Ajazuddin AA. Design and optimization of curcumin-loaded Nano lipid carrier system using box-behnken design. Biomed Pharmacother. 2021;141:111919. doi: 10.1016/j.biopha.2021.111919, PMID 34328108.

Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54Suppl 1:S131-55. doi: 10.1016/s0169-409x(02)00118-7, PMID 12460720.

Patel R, Patel M, Barot B, Patel J, Patel P. Diosgenin: a potent bioactive compound: a review. Orient Pharm Exp Med. 2020;20:203-15.

Sharma S, Tandon V, Dehariya M. Diosgenin: a major nutraceutical component from fenugreek. Pharm Lett. 2010;2:369-77.

Jain A, Vyas SP. Formulation and characterization of GDL-based artesunate solid lipid nanoparticle. Int J App Pharm. 2023;15:68-74. doi: 10.22159/ijap.2023v15i5.48913.

Papadopoulou V, Kosmidis K, Vlachou M. Comparative study of lipid and surfactant self-assembled nanoparticles using a hydrophilic drug as the active ingredient. Colloids Surf B Biointerfaces. 2014;113:325-32.

Ibrahim El-Assal M, Samuel D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative alzheimer; in vitro and ex vivo characterizations. Int J Pharm Pharm Sci. 2022;14:17-27.

Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fiction release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23-36. doi: 10.1016/0168-3659(87)90034-4.

Higuchi T. Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

Costa P, Sousa Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Rachmawati H, Budiputra DK, Mauludin R. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev Ind Pharm. 2015;41(4):560-6. doi: 10.3109/03639045.2014.884127, PMID 24502271.

Singh S, Singh J, Singh D, Dubey R. Stable diosgenin loaded solid lipid nanoparticles: a promising system for delivery of anticancer drugs. Chem Phys Lipids. 2018;212:46-54.

Zhang J, Wu L, Meng X, Cong Z, Zhang Y, Zhou L. Self-assembly and characterization of hydrophobically modified inulin. J Colloid Interface Sci. 2011;355:533-9.

Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8(11):1407-24. doi: 10.1517/17425247.2011.604311, PMID 21831007.

Pathak K, Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. 2015;54(4):325-57. doi: 10.1007/s40262-015-0242-x, PMID 25666353.

Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121-8. doi: 10.1016/s0378-5173(02)00180-1, PMID 12176234.

Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm J. 2021;29(9):999-1012. doi: 10.1016/j.jsps.2021.07.015, PMID 34588846.

Published

07-01-2024

How to Cite

ASLAM, R., TIWARI, V., UPADHYAY, P., & TIWARI, A. (2024). REVOLUTIONIZING THERAPEUTIC DELIVERY: DIOSGENIN-LOADED SOLID LIPID NANOPARTICLES UNLEASH ADVANCED CARRIERS. International Journal of Applied Pharmaceutics, 16(1), 124–133. https://doi.org/10.22159/ijap.2024v16i1.49306

Issue

Section

Original Article(s)