A REVIEW OF NANOPARTICLE INNOVATIONS IN CANCER THERAPY: IMPLICATIONS, TARGETING MECHANISMS AND CLINICAL PROSPECTS

Authors

  • LOKESHVAR R. Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Saveetha Nagar, Chennai-602105, India https://orcid.org/0000-0001-6869-3446
  • RAMAIYAN VELMURUGAN Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Saveetha Nagar, Chennai-602105, India https://orcid.org/0000-0001-6869-3446

DOI:

https://doi.org/10.22159/ijap.2024v16i3.49358

Keywords:

Cancer treatment, Pathophysiology, Nanoparticles, Nanotherapeutics

Abstract

The main reason for morbidity and death globally is cancer, which has a complex pathophysiology. There are several traditional treatments for cancer, including chemotherapy, radiation therapy, targeted therapies, and immunotherapies. Multiple drug resistance, cytotoxicity, and lack of specificity pose significant challenges to cancer treatments. Molecular diagnostics and cancer treatment have been transformed by nanotechnology. For cancer treatment, nanoparticles (1–100 nm) are ideal because they are biocompatible, have low toxicity, excellent stability, high permeability, are precise and stable, and can deliver clear and accurate results. There are several main categories of nanoparticles. When it comes to the delivery of nanoparticle drugs, tumour characteristics and the tumour environment are considered. As well as providing advantages over conventional cancer treatments, nanoparticles prevent multidrug resistance, further overcoming their limitations. As new mechanisms are unravelled in studying multidrug resistance, nanoparticles are becoming more critical. Nano formulations have gained a new perspective on cancer treatment due to their many therapeutic applications. The number of approved nanodrugs has not increased significantly despite most research being conducted in vivo and in vitro. A review of nanoparticle oncological implications, targeting mechanisms, and approved nanotherapeutics is presented here. A current perspective on clinical translation is also provided, highlighting its advantages and challenges.

Downloads

Download data is not yet available.

References

Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun. 2018;9(1):3490. doi: 10.1038/s41467-018-05467-z, PMID 30154431.

Quazi S. Telomerase gene therapy: a remission toward cancer. Med Oncol. 2022;39(6):105. doi: 10.1007/s12032-022-01702-2, PMID 35429243.

Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097-116. doi: 10.1007/s11095-008-9661-9, PMID 18626751.

Park W, Heo YJ, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res. 2018;22:24. doi: 10.1186/s40824-018-0133-y, PMID 30275967.

Jovcevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34(1):11-26. doi: 10.1007/s40259-019-00392-z, PMID 31686399.

Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59-73. doi: 10.1038/nri2216, PMID 18097448.

Chan HK, Ismail S. Side effects of chemotherapy among cancer patients in a Malaysian general hospital: experiences, perceptions and informational needs from clinical pharmacists. Asian Pac J Cancer Prev. 2014;15(13):5305-9. doi: 10.7314/apjcp.2014.15.13.5305, PMID 25040993.

Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol. 2022;39(8):120. doi: 10.1007/s12032-022-01711-1, PMID 35704152.

Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site-directed in vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55. doi: 10.1186/1477-3155-9-55, PMID 22123084.

Kroemer G, Zitvogel L. Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nat Rev Immunol. 2018;18(2):87-8. doi: 10.1038/nri.2018.4, PMID 29379189.

Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299-308. doi: 10.1038/nrc2355, PMID 18354418.

Melero I, Rouzaut A, Motz GT, Coukos G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 2014;4(5):522-6. doi: 10.1158/2159-8290.CD-13-0985, PMID 24795012.

Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018;19Suppl 1:31-9. doi: 10.1007/s40257-018-0384-3, PMID 30374901.

Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol. 2018;46Suppl2:295-305. doi: 10.1080/21691401.2018.1457039, PMID 30043651.

Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem. 2018;25(34):4224-68. doi: 10.2174/0929867324666170830113755, PMID 28875844.

Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat. 2016;27:14-29. doi: 10.1016/j.drup.2016.05.001, PMID 27449595.

Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. C R Phys. 2011;12(7):620-36. doi: 10.1016/j.crhy.2011.06.001.

Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064-110. doi: 10.1021/cr068445e, PMID 18543879.

Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57(4):724-803. doi: 10.1016/j.pmatsci.2011.08.003.

Shin WK, Cho J, Kannan AG, Lee YS, Kim DW. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep. 2016;6:26332. doi: 10.1038/srep26332, PMID 27189842.

Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci. 2008;97(9):3518-90. doi: 10.1002/jps.21270, PMID 18200527.

Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm. 2014;11(4):1250-8. doi: 10.1021/mp400703d, PMID 24521246.

El SAM. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process Synth; 2020.

Lassalle V, Ferreira ML. PLA nano and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci. 2007;7(6):767-83. doi: 10.1002/mabi.200700022, PMID 17541922.

Omidi Y, Barar J. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. BioImpacts. 2014;4(2):55-67. doi: 10.5681/bi.2014.021, PMID 25035848.

Barar J, Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. BioImpacts. 2013;3(4):149-62. doi: 10.5681/bi.2013.036, PMID 24455478.

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387-92. PMID 2946403.

Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131-5. doi: 10.1016/j.addr.2010.03.011, PMID 20304019.

Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat. 2002;200(6):581-97. doi: 10.1046/j.1469-7580.2002.00066.x, PMID 12162726.

Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nat Med. 1998;4(6):655-7. doi: 10.1038/nm0698-655, PMID 9623964.

Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95(8):4607-12. doi: 10.1073/pnas.95.8.4607, PMID 9539785.

Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229-56. doi: 10.1146/annurev.bioeng.9.060906.151850, PMID 17459001.

Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. Pathology: cancer cells compress intratumour vessels. Nature. 2004;427(6976):695. doi: 10.1038/427695a, PMID 14973470.

Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-98. doi: 10.1111/jphp.13098, PMID 31049986.

Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633-46. doi: 10.1038/sj.onc.1209597, PMID 16892078.

Lim EK, Chung BH, Chung SJ. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets. 2018;19(4):300-17. doi: 10.2174/1389450117666160602202339, PMID 27262486.

Karthikhaeyan TR, Periasamy AK, Sharma A. Correlation of CA 15.3 levels with metastasis in breast cancer. Asian J Pharm Clin Res. 2023;16(9):42-4. doi: 10.22159/ajpcr.2023v16i9.49016.

Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99-105. doi: 10.2147/ijn.s3061, PMID 19516888.

Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS. Multicenter phase II trial of genexol-PM, a novel cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18(12):2009-14. doi: 10.1093/annonc/mdm374, PMID 17785767.

Mukwaya G, Forssen EA, Schmidt P. DaunoXome® (liposomal daunorubicin) for first-line treatment of advanced, HIV-related Kaposi’s sarcoma. Long circulating liposomes. Old Drugs, New Therapeutics; 1998.

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60. doi: 10.1038/nnano.2007.387, PMID 18654426.

Kamaly N, Xiao Z, Valencia PM, Radovic Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971-3010. doi: 10.1039/c2cs15344k, PMID 22388185.

Byrne JD, Betancourt T, Brannon Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615-26. doi: 10.1016/j.addr.2008.08.005, PMID 18840489.

Saha RN, Vasanthakumar S, Bende G, Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol. 2010;27(7):215-31. doi: 10.3109/09687688.2010.510804, PMID 20939772.

Amreddy N, Muralidharan R, Babu A, Mehta M, Johnson EV, Zhao YD. Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Nanomedicine. 2015;10:6773-88. doi: 10.2147/IJN.S93237, PMID 26604751.

Santi M, Maccari G, Mereghetti P, Voliani V, Rocchiccioli S, Ucciferri N. Rational design of a transferrin-binding peptide sequence tailored to targeted nanoparticle internalization. Bioconjug Chem. 2017;28(2):471-80. doi: 10.1021/acs.bioconjchem.6b00611, PMID 27977155.

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14. doi: 10.1126/science.123.3191.309, PMID 13298683.

Jiang W, Kim BYS, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145-50. doi: 10.1038/nnano.2008.30, PMID 18654486.

Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011;6:2859-64. doi: 10.2147/IJN.S25446, PMID 22131831.

Reynolds JG, Geretti E, Hendriks BS, Lee H, Leonard SC, Klinz SG. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol Appl Pharmacol. 2012;262(1):1-10. doi: 10.1016/j.taap.2012.04.008, PMID 22676972.

Pan H, Myerson JW, Hu L, Marsh JN, Hou K, Scott MJ. Programmable nanoparticle functionalization for in vivo targeting. FASEB J. 2013;27(1):255-64. doi: 10.1096/fj.12-218081, PMID 23047896.

Low PS, Kularatne SA. Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009;13(3):256-62. doi: 10.1016/j.cbpa.2009.03.022, PMID 19419901.

Muralidharan R, Babu A, Amreddy N, Basalingappa K, Mehta M, Chen A. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. J Nanobiotechnology. 2016;14(1):47. doi: 10.1186/s12951-016-0201-1, PMID 27328938.

Samadian H, Hosseini Nami S, Kamrava SK, Ghaznavi H, Shakeri Zadeh A. Folate-conjugated gold nanoparticle as a new nano platform for targeted cancer therapy. J Cancer Res Clin Oncol. 2016;142(11):2217-29. doi: 10.1007/s00432-016-2179-3, PMID 27209529.

Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115-70. doi: 10.1016/bs.acr.2017.11.003, PMID 29405974.

Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569-78. doi: 10.1016/j.msec.2015.11.067, PMID 26706565.

Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2013;111:150-5. doi: 10.1016/j.colsurfb.2013.05.020, PMID 23792547.

Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545-61. doi: 10.1039/c2cs15327k, PMID 22334259.

Andronescu E, Grumezescu AM. Nanostructures for drug delivery. Nanostruct Drug Deliv; 2017.

Bernardi A, Braganhol E, Jager E, Figueiro F, Edelweiss MI, Pohlmann AR. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett. 2009;281(1):53-63. doi: 10.1016/j.canlet.2009.02.018, PMID 19286307.

Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58(2):97-110. doi: 10.3322/CA.2007.0003, PMID 18227410.

Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine. 2007;3(2):103-10. doi: 10.1016/j.nano.2006.12.002, PMID 17442621.

Lim J, Kostiainen M, Maly J, da Costa VC, Annunziata O, Pavan GM. Synthesis of large dendrimers with the dimensions of small viruses. J Am Chem Soc. 2013;135(12):4660-3. doi: 10.1021/ja400432e, PMID 23398590.

Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm. 2013;10(3):793-812. doi: 10.1021/mp3005325, PMID 23294202.

Kukowska Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP. Nanoparticle targeting of anticancer drug improves therapeutic response in an animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317-24. doi: 10.1158/0008-5472.CAN-04-3921, PMID 15958579.

Abedin MR, Powers K, Aiardo R, Barua D, Barua S. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci Rep. 2021;11(1):7347. doi: 10.1038/s41598-021-86762-6, PMID 33795712.

Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667-88. doi: 10.1007/s00018-011-0689-3, PMID 21560073.

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-83. doi: 10.1083/jcb.201211138, PMID 23420871.

Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond). 2016;11(18):2431-41. doi: 10.2217/nnm-2016-0154, PMID 27558906.

Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG. Mesenchymal stem cell-derived exosomes: a promising biological tool in nanomedicine. Front Pharmacol. 2020;11:590470. doi: 10.3389/fphar.2020.590470, PMID 33716723.

Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297-305. doi: 10.2174/156720107782151269, PMID 17979650.

Visht S, Awasthi R, Rai R, Srivastav P. Development of dehydration-rehydration liposomal system using film hydration technique followed by sonication. Curr Drug Deliv. 2014;11(6):763-70. doi: 10.2174/1567201811666140910122945, PMID 25213073.

Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037, PMID 23036225.

Zhang L, Gu FX, Chan JM, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761-9. doi: 10.1038/sj.clpt.6100400.

Wang X, Liu X, Li Y, Wang P, Feng X, Liu Q. Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome. Biomaterials. 2017;141:50-62. doi: 10.1016/j.biomaterials.2017.06.034, PMID 28667899.

Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161-71. doi: 10.1038/nrc1566, PMID 15738981.

Hofheinz RD, Gnad Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs. 2005;16(7):691-707. doi: 10.1097/01.cad.0000167902.53039.5a, PMID 16027517.

Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289-300. PMID 18019829.

Ali ES, Sharker SM, Islam MT, Khan IN, Shaw S, Rahman MA. Targeting cancer cells with nanotherapeutics and nanodiagnostics: current status and future perspectives. Semin Cancer Biol. 2021;69:52-68. doi: 10.1016/j.semcancer.2020.01.011, PMID 32014609.

Priyanka P, Sri Rekha M, Devi AS. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci. 2022:1-8. doi: 10.22159/ijpps.2022v14i1.42595.

Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1-2):86-95. doi: 10.1016/j.ejps.2006.01.001, PMID 16472996.

Ma P, Dong X, Swadley CL, Gupte A, Leggas M, Ledebur HC. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol. 2009;5(2):151-61. doi: 10.1166/jbn.2009.1021, PMID 20055093.

Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-7. doi: 10.1007/s13205-014-0214-0, PMID 28324579.

Du M, Yang Z, Lu W, Wang B, Wang Q, Chen Z. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul. 2020;37(6):403-12. doi: 10.1080/02652048.2020.1767224, PMID 32401077.

Dianzani C, Monge C, Miglio G, Serpe L, Martina K, Cangemi L. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment. Cancers (Basel). 2020;12(5);1198. doi: 10.3390/cancers12051198, PMID 32397484.

Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today. 2020;25(7):1174-88. doi: 10.1016/j.drudis.2020.04.013, PMID 32344042.

Subramanian S, Singireddy A, Krishnamoorthy K. Nanosponges: a novel class of drug delivery system-review. J Pharm Pharm Sci. 2012;15(1):103-11. doi: 10.18433/J3K308.

Ansari AK, J Torne S, Pradeep R, Vavia P. Paclitaxel loaded nanosponges: in vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv. 2011 Mar;8(2):194-202. doi: 10.2174/156720111794479934, PMID 21235471.

Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193-201. doi: 10.1016/j.ejpb.2009.11.003, PMID 19900544.

Ou L, Song B, Liang H, Liu J, Feng X, Deng B. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13(1):57. doi: 10.1186/s12989-016-0168-y, PMID 27799056.

Krishna KV, Menard Moyon C, Verma S, Bianco A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine (Lond). 2013;8(10):1669-88. doi: 10.2217/nnm.13.140, PMID 24074389.

Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64-73. doi: 10.1016/j.jconrel.2018.07.034, PMID 30031155.

Tao Y, Zhu L, Zhao Y, Yi X, Zhu L, Ge F. Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy. Nanoscale. 2018;10(11):5114-23. doi: 10.1039/c7nr08747k, PMID 29487939.

Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H. Hydrazinocurcumin encapsuled nanoparticles ”re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLOS ONE. 2013;8(6):e65896. doi: 10.1371/journal.pone.0065896, PMID 23825527.

Fiorillo M, Verre AF, Iliut M, Peiris Pages M, Ozsvari B, Gandara R. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy” Oncotarget. 2015;6(6):3553-62. doi: 10.18632/oncotarget.3348, PMID 25708684.

Chen Z, Mao R, Liu Y. Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab. 2012;13(8):1035-45. doi: 10.2174/138920012802850128, PMID 22380017.

Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci. 2007;6(11):1139-49. doi: 10.1039/b711141j, PMID 17973044.

Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Japan J Cancer Res. 1997;88(11):1108-16. doi: 10.1111/j.1349-7006.1997.tb00336.x, PMID 9439687.

Heister E, Neves V, Tîlmaciu C, Lipert K, Beltran VS, Coley HM. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon. 2009;47(9):2152-60. doi: 10.1016/j.carbon.2009.03.057.

Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717-32. doi: 10.1016/j.biomaterials.2007.07.014, PMID 17686516.

Bagalkot V, Zhang L, Levy Nissenbaum E, Jon S, Kantoff PW, Langer R. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065-70. doi: 10.1021/nl071546n, PMID 17854227.

Joshi V, Sulthana F, Ramadas D. Oral delivery of silver nanoparticles-a review. Asian J Pharm Clin Res. 2021;14(11):9-14. doi: 10.22159/ajpcr.2021.v14i11.42986.

Xu ZP, Zeng QH, Lu GQ. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006;61(3):1027-40. doi; 10.1016/j.ces.2005.06.019.

Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA. 2004;101(42):15027-32. doi: 10.1073/pnas.0404806101, PMID 15477593.

Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers (Basel). 2011;3(3):2888-903. doi: 10.3390/cancers3032888, PMID 24212938.

Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2011;12(1):39-50. doi: 10.1038/nrc3180, PMID 22193407.

Castaneda RT, Khurana A, Khan R, Daldrup Link HE. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp. 2011;(57):e3482. doi: 10.3791/3482, PMID 22083287.

Basoglu H, Goncu B, Akbas F. Magnetic nanoparticle-mediated gene therapy to induce Fas apoptosis pathway in breast cancer. Cancer Gene Ther. 2018;25(5-6):141-7. doi: 10.1038/s41417-018-0017-2, PMID 29593359.

Meng J, Fan J, Galiana G, Branca RT, Clasen PL, Ma S. LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater Sci Eng C. 2009;29(4):1467-79. doi: 10.1016/j.msec.2008.09.039.

Hoopes PJ, Moodie KL, Petryk AA, Petryk JD, Sechrist S, Gladstone DJ. Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer. Proc SPIE Int Soc Opt Eng. 2017;10066. doi: 10.1117/12.2256213, PMID 29203951.

Legge CJ, Colley HE, Lawson MA, Rawlings AE. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J Oral Pathol Med. 2019;48(9):803-9. doi: 10.1111/jop.12921, PMID 31309616.

Maurya A, Singh AK, Mishra G, Kumari K, Rai A, Sharma B. Strategic use of nanotechnology in drug targeting and its consequences on human health: a focused review. Interv Med Appl Sci. 2019;11(1):38-54. doi: 10.1556/1646.11.2019.04.

Khosravi Darani K, Mozafari MR, Rashidi L, Mohammadi M. Calcium-based non-viral gene delivery: an overview of methodology and applications. Acta Med Iran. 2010;48(3):133-41. PMID 21137647.

Mozafari MR, Reed CJ, Rostron C. Construction of stable anionic liposome-plasmid particles using the heating method: a preliminary investigation. Cell Mol Biol Lett. 2002;7(3):923-7. PMID 12378277.

Mozafari MR, Reed CJ, Rostron C. Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie. 2007;62(3):205-9. PMID 17416197.

Katragadda CS, Choudhury PK, Murthy PN. Nanoparticles as nonviral gene delivery vectors. Indian J Pharm Educ Res. 2010;44(2):109-20.

Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H. A nonviral DNA delivery system based on surface-modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem. 2000;11(6):926-32. doi: 10.1021/bc0000637, PMID 11087343.

Gary Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423(2):509-15. doi: 10.1016/j.ijpharm.2011.11.045, PMID 22178618.

Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769-92. doi: 10.3390/cancers6031769, PMID 25198391.

Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev. 1998;22(1):1-20. doi: 10.1111/j.1574-6976.1998.tb00358.x, PMID 9640644.

Allen JD, Brinkhuis RF, Van Deemter L, Wijnholds J, Schinkel AH. Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Res. 2000;60(20):5761-6. PMID 11059771.

Chintamani SJP, Singh JP, Mittal MK, Saxena S, Bansal A, Bhatia A. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer-a prospective clinical study. World J Surg Oncol. 2005;3:61. doi: 10.1186/1477-7819-3-61, PMID 16164742.

Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3(7):502-16. doi: 10.1038/nrc1123, PMID 12835670.

Murakami M, Cabral H, Matsumoto Y, Wu S, Kano MR, Yamori T. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med. 2011;3(64):64ra2. doi: 10.1126/scitranslmed.3001385, PMID 21209412.

Yu B, Song N, Hu H, Chen G, Shen Y, Cong H. A degradable triple temperature-, pH and redox-responsive drug system for cancer chemotherapy. J Biomed Mater Res A. 2018;106(12):3203-10. doi: 10.1002/jbm.a.36515, PMID 30242956.

Kundu M, Sadhukhan P, Ghosh N, Chatterjee S, Manna P, Das J. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res. 2019;18:161-72. doi: 10.1016/j.jare.2019.02.036, PMID 31032117.

Cuvier C, Roblot Treupel L, Millot JM, Lizard G, Chevillard S, Manfait M. Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem Pharmacol. 1992;44(3):509-17. doi: 10.1016/0006-2952(92)90443-m, PMID 1354963.

Emilienne Soma C, Dubernet C, Bentolila D, Benita S, Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin a in polyalkylcyanoacrylate nanoparticles. Biomaterials. 2000;21(1):1-7. doi: 10.1016/S0142-9612(99)00125-8.

Zhang S, Guo N, Wan G, Zhang T, Li C, Wang Y. PH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnology. 2019;17(1):109. doi: 10.1186/s12951-019-0540-9, PMID 31623608.

He J, Gong C, Qin J, Li M, Huang S. Cancer cell membrane decorated silica nanoparticle loaded with miR495 and doxorubicin to overcome drug resistance for effective lung cancer therapy. Nanoscale Res Lett. 2019;14(1):339. doi: 10.1186/s11671-019-3143-3, PMID 31705398.

Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res. 2005;94:143-96. doi: 10.1016/S0065-230X(05)94004-9, PMID 16096001.

Choi KY, Correa S, Min J, Li J, Roy S, Laccetti KH. Binary targeting of siRNA to hematologic cancer cells in vivo using layer-by-layer nanoparticles. Adv Funct Mater. 2019;29(20):1900018. doi: 10.1002/adfm.201900018, PMID 31839764.

Fan L, Li F, Zhang H, Wang Y, Cheng C, Li X. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials. 2010;31(21):5634-42. doi: 10.1016/j.biomaterials.2010.03.066, PMID 20430433.

Zhao MD, Li JQ, Chen FY, Dong W, Wen LJ, Fei WD. Co-delivery of curcumin and paclitaxel by ”core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomedicine. 2019;14:9453-67. doi: 10.2147/IJN.S224579, PMID 31819443.

Van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM. Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J. 2010;12(2):171-80. doi: 10.1208/s12248-010-9174-4, PMID 20143195.

Khiste SK, Liu Z, Roy KR, Uddin MB, Hosain SB, Gu X. Ceramide-riboside nanomicelles, a potential therapeutic approach to target cancers carrying p53 missense mutations. Mol Cancer Ther. 2020;19(2):564-74. doi: 10.1158/1535-7163.MCT-19-0366, PMID 31645443.

Choi SH, Jin SE, Lee MK, Lim SJ, Park JS, Kim BG. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm. 2008;68(3):545-54. doi: 10.1016/j.ejpb.2007.07.011, PMID 17881199.

Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharm. 2004;1(3):211-9. doi: 10.1021/mp049970+, PMID 15981924.

Cheng H, Wu Z, Wu C, Wang X, Liow SS, Li Z. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells. Mater Sci Eng C Mater Biol Appl. 2018;83:210-7. doi: 10.1016/j.msec.2017.08.075, PMID 29208281.

Zhao Y, Huan ML, Liu M, Cheng Y, Sun Y, Cui H. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep. 2016;6:35267. doi: 10.1038/srep35267, PMID 27731405.

Singh SK, Lillard JW, Singh R. Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett. 2018;427:49-62. doi: 10.1016/j.canlet.2018.04.017, PMID 29678549.

Jing X, Yang F, Shao C, Wei K, Xie M, Shen H. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. doi: 10.1186/s12943-019-1089-9, PMID 31711497.

Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei T. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial–mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology. 2018;67(5):1872-89. doi: 10.1002/hep.29681, PMID 29171040.

Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today. 2007;12(19-20):853-9. doi: 10.1016/j.drudis.2007.08.006, PMID 17933687.

Long Q, Lin T Yin, Huang Y. Image-guided photo-therapeutic nanoporphyrin synergized HSP90 inhibitor in patient-derived xenograft bladder cancer model. Nanomedicine. 2018 Apr;14(3):789-99. doi: 10.1016/j.nano.2017.12.014, PMID 29317342, PMCID PMC5898975.

Sebak AA, Gomaa IEO, Elmeshad AN. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting-part ii: in vitro and in vivo kinetics study. Int J Nanomedicine. 2020;15:9539-56. doi: 10.2147/IJN.S273721, PMID: 33299308.

Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55(1):156-9, PMID 7350935.

Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B. Protein corona and nanoparticles: how can we investigate on? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(6). doi: 10.1002/wnan.1467, PMID 28296346.

Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep. 2020;10(1):13572. doi: 10.1038/s41598-020-70393-4, PMID 32782317.

Burnett JC, Rossi JJ, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. 2011;6(9):1130-46. doi: 10.1002/biot.201100054, PMID 21744502.

Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68(23):9788-98. doi: 10.1158/0008-5472.CAN-08-2428, PMID 19047158.

Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228-34. doi: 10.1038/ncb0309-228, PMID 19255566.

Kato RB, Roy B, De Oliveira FS, Ferraz EP, De Oliveira PT, Kemper AG. Nanotopography directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit. J Cell Physiol. 2014;229(11):1690-6. doi: 10.1002/jcp.24614, PMID 24619927.

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373-87. doi: 10.1007/s11095-016-1958-5, PMID 27299311.

Liang T, Zhang R, Liu X, Ding Q, Wu S, Li C. Recent advances in macrophage-mediated drug delivery systems. Int J Nanomedicine. 2021;16:2703-14. doi: 10.2147/IJN.S298159, PMID 33854316.

Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):44. doi: 10.1186/s40169-017-0175-0, PMID 29230567.

Hu Y, Gaillard PJ, de Lange ECM, Hammarlund Udenaes M. Targeted brain delivery of methotrexate by glutathione pegylated liposomes: how can the formulation make a difference? Eur J Pharm Biopharm. 2019;139:197-204. doi: 10.1016/j.ejpb.2019.04.004, PMID 30951819.

Feng Q, Shen Y, Fu Y, Muroski ME, Zhang P, Wang Q. Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics. 2017;7(7):1875-89. doi: 10.7150/thno.18985, PMID 28638474.

Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456-69. doi: 10.1016/j.addr.2011.02.001, PMID 21315781.

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631-51. doi: 10.1016/s0169-409x(02)00044-3, PMID 12204596.

Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838-45. doi: 10.1023/a:1016085108889, PMID 8987081.

Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D. Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm. 2017;115:243-56. doi: 10.1016/j.ejpb.2017.03.013, PMID 28323111.

Paulis LE, Mandal S, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol. 2013;25(3):389-95. doi: 10.1016/j.coi.2013.03.001, PMID 23571027.

Shao K, Singha S, Clemente Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano. 2015;9(1):16-30. doi: 10.1021/nn5062029, PMID 25469470.

Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano. 2018;12(6):5121-9. doi: 10.1021/acsnano.7b09041, PMID 29771487.

Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 2015;9(7):6918-33. doi: 10.1021/acsnano.5b01042, PMID 26153897.

Fontana F, Shahbazi MA, Liu D, Zhang H, Makila E, Salonen J. Multistaged nanovaccines based on porous Silicon@Acetalated Dextran@Cancer Cell membrane for cancer immunotherapy. Adv Mater. 2017;29(7). doi: 10.1002/adma.201603239, PMID 28009461.

Perica K, De Leon Medero A, Durai M, Chiu YL, Bieler JG, Sibener L. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine. 2014;10(1):119-29. doi: 10.1016/j.nano.2013.06.015, PMID 23891987.

Bauleth Ramos T, Shahbazi MA, Liu D, Fontana F, Correia A, Figueiredo P. Nutlin-3a and cytokine co-loaded spermine-modified acetalated dextran nanoparticles for cancer chemo-immunotherapy. Adv Funct Materials. 2017;27(42). doi: 10.1002/adfm.201703303.

Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11(11):5365-86. doi: 10.7150/thno.58390, PMID 33859752.

Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine. 2018;14(2):493-506. doi: 10.1016/j.nano.2017.11.018, PMID 29197593.

Liu J, Deng ZS. Nano-cryosurgery: advances and challenges. J Nanosci Nanotechnol. 2009;9(8):4521-42. doi: 10.1166/jnn.2009.1264, PMID 19928115.

Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine. 2012;8(8):1233-41. doi: 10.1016/j.nano.2012.02.010, PMID 22406189.

Chua KJ, Chou SK, Ho JC. An analytical study on the thermal effects of cryosurgery on selective cell destruction. J Biomech. 2007;40(1):100-16. doi: 10.1016/j.jbiomech.2005.11.005.

Lv Y, Zou Y, Yang L. Uncertainty and sensitivity analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery. Forschungim Ingenieurwesen/Engineering research. Vol. 76; 2012.

Ryman Rasmussen JP, Riviere JE, Monteiro Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006;91(1):159-65. doi: 10.1093/toxsci/kfj122, PMID 16443688.

Jia G, Han Y, An Y, Ding Y, He C, Wang X. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302-16. doi: 10.1016/j.biomaterials.2018.06.029, PMID 29982104.

Awasthi R, Pant I, T Kulkarni G, Satiko Kikuchi I, de Jesus Andreoli Pinto T, Dua K. Opportunities and challenges in nano-structure mediated drug delivery: where do we stand? CNANOM. 2016;6(2):78-104. doi: 10.2174/2468187306666160808160330.

Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6(8):1794-807. doi: 10.1021/nl061025k, PMID 16895376.

Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020;32(40):e2002054. doi: 10.1002/adma.202002054, PMID 32856350.

Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487-95. doi: 10.1021/mp800032f, PMID 18510338.

Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561-9. doi: 10.1038/nbt1402, PMID 18438401.

Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA. 2010;107(5):1864-9. doi: 10.1073/pnas.0910603106, PMID 20080679.

Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015;520(7549):609-11. doi: 10.1038/520609a, PMID 25925459.

Published

07-05-2024

How to Cite

R., L., & VELMURUGAN, R. (2024). A REVIEW OF NANOPARTICLE INNOVATIONS IN CANCER THERAPY: IMPLICATIONS, TARGETING MECHANISMS AND CLINICAL PROSPECTS. International Journal of Applied Pharmaceutics, 16(3), 43–55. https://doi.org/10.22159/ijap.2024v16i3.49358

Issue

Section

Review Article(s)