FORMULATION OF MEMORY SUPPORT TARGETED NANOSTRUCTURED LIPID CARRIERS (NLCS) LOADED WITH KELULUT HONEY EXTRACT PRODUCED WEST KALIMANTAN

Authors

  • LIZA PRATIWI Jawaharlal Nehru Technological University, Kukatpally, Hyderabad-500085, Telangana, India https://orcid.org/0000-0003-3359-2025
  • ERY HERMAWATI Department of Physiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
  • BAMBANG WIJIANTO Chemistry Departement, Faculty of Medical, Tanjungpura University, Pontianak, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49479

Keywords:

NLCs, Lipid, Honey extract, Memory support, D-Optimal mixture design

Abstract

Objective: The purposes of this study were to find active compounds of the secondary metabolites, screen and determine the comparison of solid lipid, liquid lipid, and surfactant to produce the optimal NLCs formulation, analyze characteristic optimal NLCs loaded honey extract, and analyze the effectiveness of the optimal NLCs formulation as memory support in vitro. The Design-Expert software used for optimal NLCs kelulut honey extract formulation.

Methods: The research method begins with the extraction process using ethanol solvent's maceration method. The formulation of NLCs begins with screening honey extracts for various solid lipids, liquid lipids, and surfactants. Next, the formulation design uses a D-optimal mixture design to obtain 14 run variations of glyceryl monostearate: tocopherol oil: tween 20 and evaluation using transmittance response, pH, and entrapment efficiency. The data on the response is entered into the software to obtain the optimal NLCs honey extract formula. The optimal NLCs honey extract were evaluated for transmittance, pH, entrapment efficiency, particle size, transmission electron microscope (TEM), Fourier transform Infrared Spectroscopy (FTIR), and in vitro activity as memory support.

Results: Based on the evaluation, the water content of honey extract was 5.74 %±0.144; metals present in honey are Pb (0.003 mg/kg) and Cd (0.175 mg/kg). Phenolic and Total Flavonoids are 25.91 mg GAE/g±0.15 extract and 182.36 mg GAE/g extract±0.28. The optimal NLCs obtained combined glyceryl monostearate: tocopherol oil: tween 20 with a 0.5: 5.54: 23.96 composition ratio. The optimal NLCs kelulut honey extract formulation for transmittance value was 94.58%±1.54, pH was 6.59±0.15, and Entrapment efficiency was 99.89 %±0.09. Determination for particle size was 327 nm±0.57, and TEM and FTIR provided details on their structure. Evaluation for memory support in vitro, IC50 NLCs optimal formula 61.99±0.34; honey without extract 72.59±0.79; honey extract 38.55±0.24; and NLCs of base optimal formula without extract 829.81±0.93. The real-time stability shows optimal NLCs honey extract stable in real-time stability and freeze-thaw.

Conclusion: NLCs from honey extract can be formulated from optimal NLCs using Design-Expert software. NLCs from honey extract has physical characteristics according to requirements and is stable. In vitro antioxidant studies revealed that the optimal formulation NLCs loaded honey extract had higher activity memory support with IC50 61.99±0.34.

Downloads

Download data is not yet available.

References

Kuss DJ, Louws J, Wiers RW. Online gaming addiction? motives predict addictive play behavior in massively multiplayer online role-playing games. Cyberpsychol Behav Soc Netw. 2012;15(9):480-5. doi: 10.1089/cyber.2012.0034, PMID 22974351.

Han DH, Bolo N, Daniels MA, Arenella L, Lyoo IK, Renshaw PF. Brain activity and desire for internet video game play. Compr Psychiatry. 2011;52(1):88-95. doi: 10.1016/j.comppsych.2010.04.004, PMID 21220070.

WHO. Addictive behaviours: gaming disorder; 2018. https://www.who.int/news-room/Q-Adetail/addictive-behaviours-gaming-disorder.

Chou MY, Chen YJ, Lin LH, Nakao Y, Lim AL, Wang MF. Protective effects of hydrolyzed chicken extract (Probeptigen®/Cmi-168) on memory retention and brain oxidative stress in senescence-accelerated mice. Nutrients. 2019;11(8):1-21. doi: 10.3390/nu11081870, PMID 31408929.

Tashkandi H. Honey in wound healing: an updated review. Open Life Sci. 2021;16(1):1091-100. doi: 10.1515/biol-2021-0084, PMID 34708153.

Samarghandian ST, Farkhondeh T, Samini F. Honey and health: a review of recent clinical research. Pharmacognosy Res. 2017;9(2):121-7. doi: 10.4103/0974-8490.204647, PMID 28539734.

Abedi F, Ghasemi S, Farkhondeh T, Azimi Nezhad M, Shakibaei M, Samarghandian S. Possible potential effects of honey and its main components against COVID-19 infection. Dose Response. 2021;19(1):1559325820982423. doi: 10.1177/1559325820982423, PMID 33867892.

Khleifat K, Qaralleh H, Allimoun M, Al Khlifeh ES, Tawarah N. Antibacterial and antioxidant activities of local honey from Jordan. Trop J Nat. 2021;5(3):470-7. doi: 10.26538/tjnpr/v5i3.10.

Margaoan R, Topal E, Balkanska R, Yucel B, Oravecz T, Cornea Cipcigan M. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants (Basel). 2021;10(7):1-48. doi: 10.3390/antiox10071023, PMID 34202118.

Martinez Armenta C, Camacho Rea MC, Martinez Nava GA, Espinosa Velazquez R, Pineda C, Gomez Quiroz LE. Therapeutic potential of bioactive compounds in honey for treating osteoarthritis. Front Pharmacol. 2021;12:642836. doi: 10.3389/fphar.2021.642836, PMID 33967778.

Nohair SFA. Antidiabetic efficacy of a honey-royal jelly mixture: a biochemical study in rats. Int J Health Sci (Qassim). 2021;15(4):4-9. PMID 34285683.

Wadi MA. In vitro antibacterial activity of different honey samples against clinical isolates. BioMed Res Int. 2022;2022:1560050. doi: 10.1155/2022/1560050, PMID 35097108.

Dafalla NE, El-Sarrag M, Osman KA, Ali SA. Determination of flavonoids in sudanese honey samples and plant sources collected from different places in sudan. Int J Agric Innov Res. 2014;2(4):545-53.

Bonerba E, Panseri S, Arioli F, Nobile M, Terio V, Di Cesare F. Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. Food Chem. 2021;334:127575. doi: 10.1016/j.foodchem.2020.127575, PMID 32707361.

Escuredo O, Seijo MC. Authenticity of honey: characterization, bioactivities and sensorial properties. Foods. 2022;11(9):1-4. doi: 10.3390/foods11091301, PMID 35564024.

Olas B. Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients. 2020;12(2):1-14. doi: 10.3390/nu12020283, PMID 31973186.

Pratiwi L, Sari R, Apridamayanti P. Design and characterization of nanospray with self-nanoemulsifying drug delivery system using sinergistic combination of Melastoma malabathricum l. fraction and gentamicin. Int J App Pharm. 2021;13(2):254-63. doi: 10.22159/ijap.2021v13i2.40094.

Mcclements DJ, Xiao H. Is nano safe in foods? establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci Food. 2017;1(1):6. doi: 10.1038/s41538-017-0005-1, PMID 31304248.

Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol. 2013;19:29-43. doi: 10.1016/j.ifset.2013.03.002.

Riskiana N, Sundaryono A, Nurhamidah. Ethnopharmaceutical literature study, acute toxicity test of hydnopytum sp. on the histology of the mouse liver. Bencoolen J Pharm. 2021;1(1):1-10. doi: 10.33369/bjp.v1i1.15585.

Hung LC, Basri M, Tejo BA, Ismail R, Nang HLL, Abu Hassan HA. An improved method for the preparations of nanostructured lipid carriers containing heat-sensitive bioactives. Colloids Surf B Biointerfaces. 2011;87(1):180-6. doi: 10.1016/j.colsurfb.2011.05.019, PMID 21652183.

Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2007;5(1):561-73. doi: 10.4314/tjpr.v5i1.14634.

Ghasemiyeh P, Mohammadi Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303. doi: 10.4103/1735-5362.235156, PMID 30065762.

Patel DK, Tripathy S, Nair SK, Kesharwani R. Nanostructured lipid carrier (NLC) a modern approach for topical delivery: a review. World J Pharm Pharm Sci. 2013;9(3). doi: 10.22270/jddt.v9i3-s.2750.

Mohan DC, Suresh A, Mukundan S, Gupta S, Viswanad V. Development and in vitro evaluation of nanolipid carriers of clobetasol propionate and pramoxine hydrochloride for topical delivery. Int J App Pharm. 2018;10(3):28-36. doi: 10.22159/ijap.2018v10i3.24171.

Makky AM, El-Leithy ES, Hussein DG, Khattab A. Skin targeting of an optimized caffeine nanostructured lipid carrier with improved efficiency against chemotherapy-induced alopecia. Int J App Pharm. 2022;14(4):235-50. doi: 10.22159/ijap.2022v14i4.44681.

Komala O, Noorlaela E, Dhiasmi A. Antibacterial test and anti-acne mask formulation containing cinnamon (cinnamomum burmanni nees and t. nees). Ekologia. 2018;18(1):31-9.

Akhir RAM, Bakar MFA, Sanusi SB. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts. AIP Conf Proc. 2017:1-7. doi: 10.1063/1.5005423.

Biesaga M, Pyrzyńska K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 2013;136(1):46-54. doi: 10.1016/j.foodchem.2012.07.095, PMID 23017391.

Pauliuc D, Dranca F, Oroian M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods. 2020;9(3):2-22. doi: 10.3390/foods9030306, PMID 32182719.

Pontis JA, Costa LAM, Da Silva SJR, Flach A. Color, phenolic and flavonoid content, and antioxidant activity of honey from roraima, Brazil. Food Sci Technol. 2014;34(1):69-73. doi: 10.1590/S0101-20612014005000015.

Isla MI, Craig A, Ordonez R, Zampini C, Sayago J, Bedascarrasbure E. Physicochemical and bioactive properties of honeys from Northwestern Argentina. LWT-Food Science and Technology. 2011;44(9):1922-30. doi: 10.1016/j.lwt.2011.04.003.

Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers. Braz J Pharm Sci. 2020;56:1-14. doi: 10.1590/s2175-97902019000318069.

Jafar G, Abdassah M, Rusdiana T, Khairunisa R. Development and characterization of precirol ato 88 base in nanostructured lipid carriers (Nlc) formulation with the probe sonication method. Int J App Pharm. 2021;13(3):43-6. doi: 10.22159/ijap.2021.v13s3.8.

Rosli NA, Hasham R, Aziz AA, Aziz R. Formulation and characterization of nanostructured lipid carrier encapsulated Zingiber zerumbet oil using ultrasonication technique. J Adv Res Appl Mech. 2015;11(1):16-23.

Patel J, Kevin G, Patel A, Raval M, Sheth N. Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery. Int J Pharm Investig. 2011;1(2):112-8. doi: 10.4103/2230-973X.82431, PMID 23071930.

Pratiwi L, Fudholi A, Martien R, Pramono S. Physical and chemical stability test of snedds (Self-nanoemulsifying drug delivery system) and nanoemulsion ethyl acetate fraction of garcinia mangostana L. Trad Med J. 2018;23(2):84-90. doi: 10.22146/mot.28533.

Liu Y, Wang L, Zhao Y, He M, Zhang X, Niu M. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int J Pharm. 2014;476(1-2):169-77. doi: 10.1016/j.ijpharm.2014.09.052, PMID 25280882.

Kędzierska Matysek MK, Matwijczuk A, Florek M, Barłowska J, Wolanciuk A, Matwijczuk A. Application of ftir spectroscopy for analysis of the quality of honey. Bio Web Conference: Contemporary Research Trend In Agricultural Engineering. 2018;10:1-15. doi: 10.1051/bioconf/20181002008.

Dantas MGB, Reis SAG, Damasceno CMS, Rolim LA, Rolim Neto PJ, Carvalho FO. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Scientific World Journal. 2016;2016:7394685. doi: 10.1155/2016/7394685, PMID 27247965.

Kumar A, Dua JS. Formulation and evaluation of itraconazole niosomal gel. Asian J Pharm Res Dev. 2018;6(5):76-80. doi: 10.22270/ajprd.v6i5.425.

Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (dpph) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26:211-9. doi: 10.15416/ijpst.v4i2.10456.

Alqarni AS, Owayss AA, Mahmoud AA. Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arab J Chem. 2016;9(1):114-20. doi: 10.1016/j.arabjc.2012.11.013.

International Honey Commission. Harmonised methods of the international honey commission. Liebefeld, Switzerland: Swiss Bee Research Centre; 2009. p. 63.

Nordin A, Sainik NQAV, Chowdhury SR, Saim AB, Idrus RBH. Physicochemical properties of stingless bee honey from around the globe: a comprehensive review. J Food Compos Anal. 2018;73:91-102. doi: 10.1016/j.jfca.2018.06.002.

Bobis O, Moise AR, Ballesteros I, Reyes ES, Duran SS, Sanchez Sanchez J. Eucalyptus honey: quality parameters, chemical composition and health-promoting properties. Food Chem. 2020;325:126870. doi: 10.1016/j.foodchem.2020.126870, PMID 32387927.

Ministry of Health of the Republic of Indonesia. General standard parameters of medicinal plant extracts. Jakarta: Ministry of Health of the Republic of Indonesia. Thing; 2000. p. 13-31.

Patel DK, Patel K, Dhanabal S. Phytochemical standardization of aloe vera extract by HPTLC techniques. J Acute Dis. 2012;1(1):47-50. doi: 10.1016/S2221-6189(13)60011-6.

Dean J. Extraction techniques in analytical science. London: john Wiley and Sons LTD; 2009. p. 43-6.

Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51(25):7292-5. doi: 10.1021/jf0344385, PMID 14640573.

Azizah DN, Kumolowat E, Faramayuda F. Determination of flavonoid levels AlCl3 method in methanol extract of cocoa fruit peel (Theobroma cacao L.). Kartika Pharmaceutical Scientific Journal. 2014;2(2):45-9. doi: 10.26874/KJIF.V2I2.14.

Albu A, Radu Rusu R, Simeanu D, Radu Rusu C, Pop IM. Phenolic and total flavonoid contents and physicochemical traits of Romanian monofloral honeys. Agriculture. 2022;12(9):1-15. doi: 10.3390/agriculture12091378.

Souto EB, Muller RH. Lipid nanoparticles (Solid lipid nanoparticles and nanostructured lipid carriers) for cosmetic, dermal, and transdermal applications. Drug Deliv Syst Nanoparticulate. 2007:213-29.

Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005;45(3-4):167-73. doi: 10.1016/j.colsurfb.2005.08.005, PMID 16198092.

Chen L, Ao F, Ge X, Shen W. Food-grade pickering emulsions: preparation, stabilization and applications. Molecules. 2020;25(14):1-24. doi: 10.3390/molecules25143202, PMID 32674301.

Thomas N, Holm R, Garmer M, Karlsson JJ, Mullertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (Super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J. 2013;15(1):219-27. doi: 10.1208/s12248-012-9433-7, PMID 23180162.

Zhang C, Luo S, Zhang Z, Niu Y, Zhang W. Evaluation of glabridin loaded nanostructure lipid carriers. J Taiwan Inst Chem Eng. 2017;71:338-43. doi: 10.1016/j.jtice.2016.11.010.

Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522-30. doi: 10.1016/j.addr.2007.04.012, PMID 17602783.

Ebtavanny TG, Soeratri W, Rosita N. Effect of lipid composition on nanostructured lipid carrier (nlc) on ubiquinone effectiveness as an anti-aging cosmetics. Int J Drug Deliv Technol. 2018;8(3):144-50. doi: 10.25258/ijddt.8.3.5.

Lukic M, Pantelic I, Savic S. An overview of novel surfactants for formulation of cosmetics with certain emphasis on acidic active substances. Tenside Surfactants Deterg. 2016;53(1):7-19. doi: 10.3139/113.110405.

Rowe RC. Handbook of pharmaceutical excipients, 6th Ed. Apha, editor. (Php) Pharmaceutical Press. Vol. 546. London; 2009. p. 592.

Pratiwi L. Novel antimicrobial activities of self-nanoemulsifying drug delivery system ethyl acetate fraction from Garcinia mangostana L. peels against staphylococcus epidermidis: design, optimization, and in vitro studies. J Appl Pharm Sci. 2021;11(3):162-71.

Hardikar SR, Akbar Ansari DM, Patil NA. Formulation of nanostructured lipid carriers of haloperidol prepared by using clarified butter. Int J App Pharm. 2023;15(2):213-8. doi: 10.22159/ijap.2023v15i2.46759.

Kumar R, Yasir M, Saraf SA, Gaur PK, Kumar Y, Singh AP. Glyceryl monostearate based nanoparticles of mefenamic acid: fabrication and in vitro characterization. Drug Invent Today. 2013;5(3):246-50. doi: 10.1016/j.dit.2013.06.011.

Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2-11. doi: 10.4103/2230-973X.96920, PMID 23071954.

How CW, Rasedee A, Abbasalipourkabir R. Characterization and cytotoxicity of nanostructured lipid carriers formulated with olive oil, hydrogenated palm oil, and polysorbate 80. IEEE Trans Nanobioscience. 2013;12(2):72-8. doi: 10.1109/TNB.2012.2232937, PMID 23268387.

Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH. Zerumbone-loaded nanostructured lipid carriers: preparation, characterization, and antileukemic effect. Int J Nanomedicine. 2013;8(1):2769-81. doi: 10.2147/IJN.S45313, PMID 23946649.

Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (nlc) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(1)Suppl 1:S131-55. doi: 10.1016/s0169-409x(02)00118-7, PMID 12460720.

Erejuwa OO, Sulaiman SA, Wahab MS. Oligosaccharides might contribute to the antidiabetic effect of honey: a review of the literature. Molecules. 2011;17(1):248-66. doi: 10.3390/molecules17010248, PMID 22205091.

Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Mol Liq. 2016;218:219-32. doi: 10.1016/j.molliq.2016.02.081.

Fahmy UA, Ahmed OA, Hosny KM. Development and evaluation of avanafil self-nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech. 2015;16(1):53-8. doi: 10.1208/s12249-014-0199-3, PMID 25168449.

Hosny KM, Banjar ZM. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia. Expert Opin Drug Deliv. 2013;10(8):1033-41. doi: 10.1517/17425247.2013.812069, PMID 23795561.

Singh SK, Verma PR, Razdan B. Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization. Drug Dev Ind Pharm. 2010;36(8):933-45. doi: 10.3109/03639040903585143, PMID 20184416.

Fernandez P, Andre V, Rieger J, Kuhnle A. Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2004;251(1-3):53-8. doi: 10.1016/j.colsurfa.2004.09.029.

Larsen AT, Akesson P, Jureus A, Saaby L, Abu Rmaileh R, Abrahamsson B. Bioavailability of cinnarizine in dogs: effect of SNEDDS loading level and correlation with cinnarizine solubilization during in vitro lipolysis. Pharm Res. 2013;30(12):3101-13. doi: 10.1007/s11095-013-1145-x, PMID 23949249.

Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces. 2011;86(2):327-38. doi: 10.1016/j.colsurfb.2011.04.016, PMID 21550214.

Badran MM, Taha EI, Tayel MM, Al-Suwayeh SA. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq. 2014;190:16-22. doi: 10.1016/j.molliq.2013.10.015.

Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2013;112:337-43. doi: 10.1016/j.colsurfb.2013.08.025, PMID 24012665.

Shakeel F, Haq N, Alanazi FK, Alsarra IA. Polymeric solid self-nanoemulsifying drug delivery system of glibenclamide using coffee husk as a low-cost biosorbent. Powder Technol. 2014;256:352-60. doi: 10.1016/j.powtec.2014.02.028.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2). doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Lv W, Zhao S, Yu H, Li N, Garamus VM, Chen Y. Brucea javanica oil-loaded nanostructure lipid carriers (BJO NLCs): preparation, characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Aspects. 2016;504:312-9. doi: 10.1016/j.colsurfa.2016.05.068.

Weiss J, Decker EA, Mcclements DJ, Kristbergsson K, Helgason T, Awad T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys. 2008;3(2):146-54. doi: 10.1007/s11483-008-9065-8.

Okonogi S, Riangjanapatee P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int J Pharm. 2015;478(2):726-35. doi: 10.1016/j.ijpharm.2014.12.002, PMID 25479097.

Mcclements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285-330. doi: 10.1080/10408398.2011.559558, PMID 21432697.

Witayaudom P, Klinkesorn U. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat. J Colloid Interface Sci. 2017;505:1082-92. doi: 10.1016/j.jcis.2017.07.008. PMID 28697547.

Karn Orachai K, Smith SM, Phunpee S, Treethong A, Puttipipatkhachorn S, Pratontep S. The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers. J Microencapsul. 2014;31(6):609-18. doi: 10.3109/02652048.2014.911374, PMID 24861323.

Ziani K, Fang Y, McClements DJ. Fabrication and stability of colloidal delivery systems for flavor oils: effect of composition and storage conditions. Food Res Int. 2012;46(1):209-16. doi: 10.1016/j.foodres.2011.12.017.

Salminen H, Aulbach S, Leuenberger BH, Tedeschi C, Weiss J. Influence of surfactant composition on physical and oxidative stability of quillaja saponin-stabilized lipid particles with encapsulated ω-3 fish oil. Colloids Surf B Biointerfaces. 2014;122:46-55. doi: 10.1016/j.colsurfb.2014.06.045, PMID 25016544.

Rahmasari D, Rosita N, Soeratri W. Physicochemical characteristics, stability, and irritability of nanostructured lipid carrier system stabilized with different surfactant ratios. JFIKI 2022;9(1):8-16. doi: 10.20473/jfiki.v9i12022.8-16.

Rohman A. Analytical pharmaceutical chemistry. Yogyakarta: Student Library; 2007.

Martinez Armenta C, Camacho Rea MC, Martinez Nava GA, Espinosa Velazquez R, Pineda C, Gomez Quiroz LE. Therapeutic potential of bioactive compounds in honey for treating osteoarthritis. Front Pharmacol. 2021;12:642836. doi: 10.3389/fphar.2021.642836, PMID 33967778.

Kim SJ, Hong EH, Lee BR, Park MH, Kim JW, Pyun AR. Α-mangostin reduced er stress-mediated tumor growth through autophagy activation. Immune Netw. 2012;12(6):253-60. doi: 10.4110/in.2012.12.6.253, PMID 23396851.

Gurav S, Deshkar SN, Gulkari V, Duragkar VN, Patil A. Free radical scavenging activity of polygala chinensis linn. Pharmacol Online. 2007;2:245-53.

Arazo M, Bello A, Rastrelli L, Montelier M, Delgado L, Panfet C. Antioxidant properties of pulp and peel of yellow mangosteen fruits. Emirates J Food Agric. 2011;23(6):517-24.

Published

07-01-2024

How to Cite

PRATIWI, L., HERMAWATI, E., & WIJIANTO, B. (2024). FORMULATION OF MEMORY SUPPORT TARGETED NANOSTRUCTURED LIPID CARRIERS (NLCS) LOADED WITH KELULUT HONEY EXTRACT PRODUCED WEST KALIMANTAN. International Journal of Applied Pharmaceutics, 16(1), 202–213. https://doi.org/10.22159/ijap.2024v16i1.49479

Issue

Section

Original Article(s)