THE DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR EVALUATING GALLIC ACID IN ETHYL ACETATE FRACTION (EAF) OF SNEDDS FORMULATION: QUANTITATIVE ANALYSIS WITH IN VITRO ASSAY

Authors

  • PRATIWI APRIDAMAYANTI Departement of Chemical Pharmacy, Medicine Faculty, Tanjungpura University, Pontianak City, West Borneo, Indonesia https://orcid.org/0000-0001-5620-9813
  • LIZA PRATIWI Departement of Technology Pharmacy, Medicine Faculty, Tanjungpura University, Pontianak City, West Borneo, Indonesia https://orcid.org/0000-0003-3359-2025
  • RAFIKA SARI Departement of Biology Pharmacy, Medicine Faculty, Tanjungpura University, Pontianak City, West Borneo, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49830

Keywords:

Quantitative analysis ethyl acetate fraction (EAF) of Melastoma malabathricum leaves in combination with gentamicin in SNEDDS formulation, Development and Validation, In vitro assay

Abstract

Objective: This study aimed to develop a simple, accurate, precise, sensitive, robust, and stable analytical method for the evaluation of gallic acid in Self-Nanoemulsifying Drug Delivery System (SNEDDS) incorporating ethyl acetate fraction (EAF) of Melastoma malabathricum leaves in combination with Gentamicin.

Methods: Validation process followed ICH guidelines and applied a reverse phase HPLC method with a mobile phase of acetonitrile-phosphoric buffer at pH 3.03 (20:80 v/v). The stationary phase consisted of a VP-ODS shim-pack C-18 column (250x4.6 mm) with a flow rate of 0.2 ml/min and detection at 263 nm using an Ultraviolet detector. Additionally, antioxidant activity was assessed through the DPPH and FRAP methods, and SPF value was determined with a UV/Vis spectrophotometer in the 290-390 nm wavelength range.

Results: The results showed that the retention time of quercetin was 16.648 min with a tailing factor of 1.623. The regression equation (y=224689x-989000) had a concentration range of 10-55 µg/ml and a correlation value of 0.9920. Limit of Detection (LOD) and Limit of Quantification (LOQ) were found to be 2.394±0.086 and 7.254±0.260 µg/ml, respectively. Method accuracy, determined by recovery values at concentrations of 50%, 100%, and 150%, ranged from 91.18% to 109.49%. Repeatability inter-day variations were expressed as %RSD values of 1.027-1.963% for AUC and 0.150-0.145 for RT. Moreover, the applied method showed stability within a temperature range of 14 °C–35 °C. Analysis showed gallic acid content of 1.773±0.049 mg/g in SNEDDS EAF formulation. Antioxidant activity measured through the DPPH and FRAP methods yielded IC50 values of 4.167±0.552 µg/ml and 20.253±0.619 µg/ml, respectively, while SPF value at SNEDDS concentration of 150 µg/ml was 36.993±0.183.

Conclusion: This study successfully developed a precise, accurate, specific, and stable method for quantifying gallic acid levels in SNEDDS EAF of Melastoma malabathricum leaves in combination with Gentamicin. Therefore, SNEDDS EAF formulation exhibited an effective wound-healing potential, supported by a robust quality control process.

Downloads

Download data is not yet available.

References

Yang DJ, Moh SH, Son DH, You S, Kinyua AW, Ko CM. Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules. 2016;21(7):1-15. doi: 10.3390/molecules21070899, PMID 27399667.

Nayeem N, Smb A. Gallic acid: a promising lead molecule for drug development. J App Pharm 2016;8(2):2-4. doi: 10.4172/1920-4159.1000213.

Agrawal R, Ganeshpurkar A, Verma M. Evaluation of in vitro anti-inflammatory activity of gallic acid. Int J Res Rev. 2021;8(12):323-7. doi: 10.52403/ijrr.20211240.

Singh MP, Gupta A, Sisodia SS. Wound healing activity of Terminalia bellerica Roxb. and gallic acid in experimentally induced diabetic animals. J Complement Integr Med. 2019;17(2):20190133. doi: 10.1515/jcim-2019-0133, PMID 31494631.

Apridamayanti P, Sari R, Pratiwi L. Quantitative analysis study on marker compound in crude extract and polar fraction of Melastoma malabathricum L. with reversed-phase high-performance liquid chromatography and determination of antioxidant activity and sun protection factor value as natural resources for cosmetics. J App Pharm Sci. 2022. doi: 10.7324/JAPS.2022.121105.

Kardani K, Gurav N, Solanki B, Patel P, Patel B. RP-HPLC method development and validation of gallic acid in polyherbal tablet formulation. J Appl Pharm Sci. 2013;3(05):37-42. doi: 10.7324/JAPS.2013.3508.

Karupiah S, Ismail Z. Antioxidative effect of Melastoma malabathticum L. extract and determination of its bioactive flavonoids from various location in Malaysia by RP-HPLC with diode array detection. J Appl Pharm Sci. 2013;3(2):19-24.

Hainil S, Mayefis D, Wahyuni R. Antioxidant activity of ethanol extract and ethyl acetate fraction daun senduduk (Melastoma malabathricum L.) metode DPPH(2,2-diphenyl-1-picrylhydrazyl). J Public Health. 2023;2(1):35-42. doi: 10.55123/sehatmas.v2i1.981.

Apridamayanti P, Sari R, Pratiwi L. Development validation of quercetin compounds using Rp-HPLC and in vitro activity studies on Melastoma malabathricum leaf nanocream foundation preparations. Int J App Pharm. 2023;15(5):317-24. doi: 10.22159/ijap.2023v15i5.48297.

Gan JE, Chin CY. Formulation and characterisation of alginate hydrocolloid film dressing loaded with gallic acid for potential chronic wound healing. F1000Res. 2021;10:451. doi: 10.12688/f1000research.52528.1, PMID 34249341.

Stefanov I, Hinojosa Caballero D, Maspoch S, Hoyo J, Tzanov T. Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. J Mater Chem B. 2018;6(47):7943-53. doi: 10.1039/C8TB02483A, PMID 32255040.

Seulgi P, Mei-Xian LMX, Chod WK, Joung YK, Huhs KM. Chitosan hexanoyl glycol conjugated with thermosensitive gallic acid as a biomaterial healing of new wounds. Carbohydr Polym. 2021:26(2021):117808. doi: 10.1016/j.carbpol.2021.117808.

Pratiwi L, Sari R, Apridamayanti P. Design and characterization of nanospray with self-nanoemulsifying drug delivery system using Sinergistic combination of Melastoma malabathricum L. Fraction and gentamicin. Int J App Pharm. 2021;13(2):254-63. doi: 10.22159/ijap.2021v13i2.40094.

Sari R, Pratiwi L, Apridamayanti P. The highest dosage combination activity screening from the leaf fraction of Melastoma malabathricum with antibiotic gentamicin and ciprofloxacin. J Pharmacopuncture. 2022;25(2):101-5. doi: 10.3831/KPI.2022.25.2.101, PMID 35837148.

Naseef H, Moqadi R, Qurt M. Development and validation of an HPLC method for determination of antidiabetic drug alogliptin benzoate in bulk and tablets. J Anal Methods Chem. 2018;2018:1902510. doi: 10.1155/2018/1902510, PMID 30345140.

Sharma S, Goyal S, Chauhan K. A review on analytical method development and validation. Int J App Pharm. 2018;10(6):8-15. doi: 10.22159/ijap.2018v10i6.28279.

Ppis P. Front Cover. PPIS;2019:c1. doi: 10.31153/ppis.2019.41.

Patil PN. HPLC method development-a review. SGVU J Pharm Res. 2017.

Bose A. HPLC calibration process parameters in terms of system suitability test. Austin Chromatogr. 2014;1:4.

Ravisankar P, Anusha S, Supriya K, Kumar UA. Fundamental chromatographic parameters. Int J Pharm Sci Rev Res. 2019;55(2):46-50.

Shaikh S, Jain V. Development and validation of a Rp-HPLC method for the simultaneous determination of quercetin, ellagic acid and Rutin in hydroalcoholic extract of Triphala Churna. Int J App Pharm. 2018;10(3):169-74. doi: 10.22159/ijap.2018v10i3.25860.

Saputri FA, Muchtaridi M. Analytical method development and validation for the determination of caffeine in green coffee beans (Coffea Arabica L.) from three districts of west java, Indonesia by high-performance liquid chromatography. Int J App Pharm. 2018;10(6). doi: 10.22159/ijap.2018v10i6.28551.

Snyder L, Kirkland J, Dolan J. Introduction to modern liquid. Chromatography. 3rd ed, John. NJ: Wileyandsons inc.; 2010.

Gulumian M, Yahaya ES, Steenkamp V. African herbal remedies with antioxidant activity: A potential resource base for wound treatment. Evid Based Complement Alternat Med. 2018. doi: 10.1155/2018/4089541, PMID 30595712.

Comino Sanz IM, Lopez Franco MD, Castro B, Pancorbo Hidalgo PL. The role of antioxidants on wound healing: a review of the current evidence. J Clin Med. 2021;10(16):3558. doi: 10.3390/jcm10163558, PMID 34441854.

Hettihewa SK, Opatha SAT. A comparative study on sunscreening and radical scavenging in vitro activities of solvent extracts obtained from dried canna (red) flowers grown in Sri Lanka. World J Pharm Res. 2020;9(4):94-104. doi: 10.20959/wjpr20204-16606.

Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89-96. doi: 10.1111/iwj.12557, PMID 26688157.

Kurahashi T, Fujii J. Roles of antioxidative enzymes in wound healing. JDB. 2015;3(2):57-70. doi: 10.3390/jdb3020057.

Monteiro E Silva SA, Calixto GMF, Cajado J, De Carvalho PCA, Rodero CF, Chorilli M. Gallic acid-loaded gel formulation combats skin oxidative stress: development, characterization and ex vivo biological assays. Polymers. 2017;9(9):391-401. doi: 10.3390/polym9090391, PMID 30965694.

Yang K, Zhang L, Liao P, Xiao Z, Zhang F, Sindaye D. Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action. Front Immunol. 2020;11:580208. doi: 10.3389/fimmu.2020.580208, PMID 33042163.

Pressi G, Bertaiola O, Guarnerio C, Barbieri E, Rigillo G, Governa P. In vitro cell culture of rhus coriaria L.: A standardized phytocomplex rich of gallic acid derivatives with antioxidant and skin repair activity. Cosmetics. 2022;9(1):12. doi: 10.3390/cosmetics9010012.

Pal SM, Avneet G, Siddhraj SS. Gallic acid: pharmacogical promising lead molecule: a review. Int J Pharmacogn Phytochem Res. 2018;10(4):132-8. doi: 10.25258/phyto.10.4.2.

Alwadei M, Kazi M, Alanazi FK. Novel oral dosage regimen based on self-nanoemulsifying drug delivery systems for codelivery of phytochemicals–curcumin and thymoquinone. Saudi Pharm J. 2019;27(6):866-76. doi: 10.1016/j.jsps.2019.05.008, PMID 31516329.

Khairnar A, Shelke S, Rathod V, Kalawane Y, Jagtap A. Review on anti hyperlipidemia lipophilic drugs and their novel formulation approaches. Int J Pharm Pharm Sci. 2017;9(9). doi: 10.22159/ijpps.2017v9i9.19301.

Gohel M, Purohit AA, Patel A, Hingorani L. Optimization of bacoside a loaded snedds using d-optimal mixture design for enhancement insolubility and bioavailability. Int J Pharm Pharm Sci. 2016;8(12). doi: 10.22159/ijpps.2016v8i12.13488.

Shetta A, Kegere J, Mamdouh W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol. 2019;126:731-42. doi: 10.1016/j.ijbiomac.2018.12.161, PMID 30593811.

Lu L, Yang P, Chen T, Shen Y, Yao Q, Yan J. Changes in biological activities after olive oil, pomegranate seed oil, and grape seed oil were formulated into self-nanoemulsifying systems. J Oleo Sci. 2020;69(2):161-6. doi: 10.5650/jos.ess19255, PMID 31941867.

Abdel-All SR, Shakour ZTA, Abouhussein DMN, Reda E, Sallam TF, El-Hefnawy HM. Phytochemical and biological evaluation of a newly designed nutraceutical self-nanoemulsifying self-nanosuspension for protection and treatment of cisplatin-induced testicular toxicity in male rats. Molecules. 2021;26(2):408. doi: 10.3390/molecules26020408, PMID 33466804.

Wijayanti II, Budiharjo A, Pangastuti A, Prihapsara F, Artanti AN. Total phenolic content and antioxidant activity of ginger extract and SNEDDS with eel fish bone oil (Anguilla spp.). Nusantara Biosci. 2023;10(3):164-9. doi: 10.13057/nusbiosci/n100306.

Kholieqoh AH, Muhammad TST, Mohamad H, Choukaife H, Seyam S, Alfatama M. Formulation and characterization of SNEDDS of pandanus tectorius fruit extract and in vitro antioxidant activity. Orient J Chem. 2022;38(4):855-64. doi: 10.13005/ojc/380404.

Lestari SR, Prastita N, Maslikah Sl, Sunaryono S, Gofur A, Fajaroh F. Development of self nanoemulsifying drug delivery system (SNEDDS) to improve antioxidant activity of single garlic extract (Allium sativum L.). AIP Conf Proc. 2023;2634:020003. doi: 10.1063/5.0111654.

Frei G, Haimhoffer A, Csapo E, Bodnar K, Vasvari G, Nemes D. In vitro and in vivo efficacy of topical dosage forms containing self-nanoemulsifying drug delivery system loaded with curcumin. Pharmaceutics. 2023;15(8):2054. doi: 10.3390/pharmaceutics15082054, PMID 37631267.

Liu X, Zhang R, Shi H, Li X, Li Y, Taha A. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts. Mol Med Rep. 2018;17(5):7227-37. doi: 10.3892/mmr.2018.8791, PMID 29568864.

Published

07-03-2024

How to Cite

APRIDAMAYANTI, P., PRATIWI, L., & SARI, R. (2024). THE DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR EVALUATING GALLIC ACID IN ETHYL ACETATE FRACTION (EAF) OF SNEDDS FORMULATION: QUANTITATIVE ANALYSIS WITH IN VITRO ASSAY. International Journal of Applied Pharmaceutics, 16(2), 57–65. https://doi.org/10.22159/ijap.2024v16i2.49830

Issue

Section

Original Article(s)