EFFECT OF PEGYLATED POLYPROPYLENE IMINE DENDRITIC ARCHITECTURE ON PHARMACOKINETICS OF PYRAZINAMIDE ON RABBITS
DOI:
https://doi.org/10.22159/ijap.2024v16i2.49557Keywords:
Dendrimers, Pyrazinamide, PharmacokineticsAbstract
Objective: This study sought to investigate the impact of pegylated polypropylene imine dendrimer-loaded pyrazinamide on drug delivery and assess this novel formulation's pharmacokinetic parameters.
Methods: Various concentrations of pyrazinamide-loaded dendrimers were formulated in four distinct batches, with the most promising formulation selected for administration to New Zealand rabbits. Plasma concentrations of the drug were subsequently compared to those of the pure drug. Pharmacokinetic parameters, including maximum plasma concentration (Cmax), time to reach Cmax (tmax), the area under the curve (AUC), the area under the first moment curve (AUMC), elimination rate constant (λz), biological half-life (t1/2), and mean residence time (MRT), were meticulously determined.
Results: The plasma drug concentration Vs time profile illustrated a sustained release pattern for the pyrazinamide drug-loaded dendrimer formulation compared to the pure drug. While a minor alteration was observed in peak plasma concentration, a notable divergence was noted in all other pharmacokinetic parameters. The AUC demonstrated a fourfold increase for pyrazinamide drug-loaded dendrimers, rising from 8657.94±295.10 to 34663.89±702.89 (ng/ml/h), and the mean residence time nearly doubled when compared to the pure drug.
Conclusion: Pyrazinamide drug-loaded dendrimers exhibit significant potential for enhancing drug release compared to the pure drug. This novel formulation promises a substantial and sustained drug release profile, holding promise for improving therapeutic outcomes and patient compliance in the treatment of relevant conditions.
Downloads
References
Moniz M, Soares P, Leite A, Nunes C. Tuberculosis amongst foreign-born and nationals: different delays, different risk factors. BMC Infect Dis. 2021 Sep;21(1):934. doi: 10.1186/s12879-021-06635-1, PMID 34496792.
Arch G, Mainous I, Pomeroy C. Management of antimicrobials in infectious diseases: impact of antibiotic resistance; 2010.
Kumar S, Yadav S, Kataria N, Chauhan AK, Joshi S, Gupta R. Recent advancement in nanotechnology for the treatment of pharmaceutical wastewater: sources, toxicity, and remediation technology. Curr Pollution Rep 2023;9(2):110-42. doi: 10.1007/s40726-023-00251-0.
Bernal Chavez SA, Del Prado Audelo ML, Caballero-Floran IH, Giraldo Gomez DM, Figueroa Gonzalez G, Reyes Hernandez OD. Insights into terminal sterilization processes of nanoparticles for biomedical applications. Molecules. 2021 Apr;26(7):2068. doi: 10.3390/molecules26072068, PMID 33916823.
Selvaraj GJ, Balasubramanian A, Ramalingam K. Development of a mucoadhesive tablet of pentoxifylline using a natural polymer from manilkara zapota linn. Int J App Pharm. 2019;11(4):88-91. doi: 10.22159/ijap.2019v11i4.32177.
Jain K, Mehra N, Jain V, Jain N. IPN dendrimers in drug delivery; 2020. p. 143-81.
Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol. 2009 Aug;61(8):989-1003. doi: 10.1211/jpp/61.08.0002, PMID 19703342.
Rai DB, Medicherla K, Pooja D, Kulhari H. Dendrimer-mediated delivery of anticancer drugs for colon cancer treatment. Pharmaceutics. 2023;15(3):801. doi: 10.3390/pharmaceutics15030801, PMID 36986662.
Pandey S, Shah RR, Gupta A, Arul B. Design and evaluation of buccoadhesive controlled release formulations of prochlorperazine maleate. Int J Pharm Pharm Sci. 2016;8(1):375-9.
Das PS, Saha P. Design and characterisation of transdermal Patches of phenformin hydrochloride. Int J Curr Pharm Sci. 2017 Nov 14;9(6):90-3. doi: 10.22159/ijcpr.2017v9i6.23437.
Pedziwiatr Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J. 2019;119:61-73. doi: 10.1016/j.eurpolymj.2019.07.013.
Wang G, Fu L, Walker A, Chen X, Lovejoy DB, Hao M. Label-free fluoresc poly(amidoamine) dendrimer for traceable and controlled drug delivery. Biomacromolecules. 2019 May;20(5):2148-58.
Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials (Basel). 2019 Dec;13(1):65. doi: 10.3390/ma13010065, PMID 31877717.
Golden MP, Vikram HR. Extrapulmonary tuberculosis: an overview. Am Fam Physician. 2005 Nov;72(9):1761-8. PMID 16300038.
Zimhony O, Cox JS, Welch JT, Vilcheze C, Jacobs WRJ. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med. 2000 Sep;6(9):1043-7. doi: 10.1038/79558, PMID 10973326.
Manalan BV, Arul B, Kothai R. Formulation and evaluation of pyrazinamide loaded pegylated polypropylene imine dendrimer for treating. Tuberculosis. 2023;15(6):768-76.
Manalan BV, Arul B, Kothai R. Pyrazinamide-loaded pegylated polypropylene imine dendritic architecture for reducing haemolytic toxicity. Biological Forum-An International Journal. 2023;15(6):795-800.
Ahmed AB, Konwar R, Sengupta R. Atorvastatin calcium loaded chitosan nanoparticles: in vitro evaluation and in vivo pharmacokinetic studies in rabbits. Braz J Pharm Sci. 2015 Jun 1;51(2):467-77. doi: 10.1590/S1984-82502015000200024.
Mignani S, Rodrigues J, Roy R, Shi X, Cena V, El Kazzouli S. Exploration of biomedical dendrimer space based on in vivo physicochemical parameters: key factor analysis (Part 2). Drug Discov Today. 2019 May;24(5):1184-92. doi: 10.1016/j.drudis.2019.03.001, PMID 30904723.
Kjellsson MC, Via LE, Goh A, Weiner D, Low KM, Kern S. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother. 2012 Jan;56(1):446-57. doi: 10.1128/AAC.05208-11, PMID 21986820.
Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010 Jul;1(2):87-93. doi: 10.4103/0976-500X.72350, PMID 21350616.
Nelson EA, Keller GL, Mitchell TW, Pennypacker B, Rebbeck P, Rogers IT. A jugular bleeding technique in rabbits. Lab Anim (NY). 2010 Jan;39(1):17-22. doi: 10.1038/laban0110-17, PMID 20023677.
Prasanthi B, Ratna JV, Phani RSC. Development and validation of RP-HPLC method for simultaneous estimation of rifampicin, isoniazid and pyrazinamide in human plasma. J Anal Chem. 2015;70(8):1015-22. doi: 10.1134/S1061934815080146.
Harris D, Fell JT, Taylor DC, Lynch J, Sharma HL. GI transit of potential bioadhesive systems in the rat. J Control Release. 1990;12(1):55-65. doi: 10.1016/0168-3659(90)90183-T.
Chan K, Wong CL. Pharmacokinetics of pyrazinamide in plasma and CSF of rabbits following intravenous and oral administration. Eur J Drug Metab Pharmacokinet. 1988;13(3):195-9. doi: 10.1007/BF03189939, PMID 3240765.
Selvaraj GJ, Balasubramanian A, Ramalingam K. Alteration of pharmacokinetic parameters of pentoxifylline using natural mucoadhesive polymers. Int J App Pharm. 2020;12(1):153-7. doi: 10.22159/ijap.2020v12i1.36080.
Shivalingam MR, Balasubramanian A, Ramalingam K. Alteration of pharmacokinetic parameters of proton pump inhibitors using transdermal drug delivery system. Int J App Pharm. 2021;13(5):371-5. doi: 10.22159/ijap.2021v13i5.42617.
Published
How to Cite
Issue
Section
Copyright (c) 2024 ARUL BALASUBRAMANIAN, VALLI MANALAN BALASUBRAMANIAN, KOTHAI RAMALINGAM
This work is licensed under a Creative Commons Attribution 4.0 International License.