APPROACHES ON SURROGATE METHODS FOR IN VIVO BIOEQUIVALENCE STUDY OF FORMULATED BILAYER TABLETS OF DOMPERIDONE AND ITOPRIDE

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49641

Keywords:

Biopharmaceutics classification system, Bilayer tablets, Biowaiver, Dissolution, IVIVC

Abstract

Objective: This study aims to provide a more efficient pathway for generic drug approval while maintaining the same level of therapeutic equivalence and safety as the reference product. This was based on the equivalence of in vitro evidence other than through expensive in vivo equivalence testing.

Methods: Biowaiver and IVIVC are surrogate methods for in vivo bioequivalence studies. The Biowaiver test was done according to WHO, TRS992, 2015 Annex 7, Appendix 1, the recommendation for conducting and assessing comparative dissolution. IVIVC was done by the level A Convolution method. Innovator product was used as Ganaton OD for Itopride and Motilium for Domperidone to perform the comparison testing.

Results: The similarity factor (F2) between the test and innovator product of Domperidone at pH 1.2 HCl, Acetate Buffer pH 4.5, and water was 79.51, 68.00, and 58.97 and the dissimilarity factor (F1) was 7.24, 8.05 and 11.01 respectively. From the IVIVC study by level A convolution method of Cmax, AUC, Tmax of Ganaton OD and formulated Itopride were found to be 409.16ng/ml, 5652.28 ngh/ml and 4h and 252.16ng/ml, 4601.12 ngh/ml and 12 h respectively.

Conclusion: The F2 limit is 50-100 and F1 is 15 mentioned as per guidelines followed for the biowaiver test, which means the formulated domperidone is deemed equivalent to (Motilium) innovator of domperidone. The predictive error on the AUC of Itopride formulated was found to be 18.59 % which was within the limit of±20 %, demonstrating the therapeutic range.

Downloads

Download data is not yet available.

References

Polli JE. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing the bioequivalence of immediate-release solid oral dosage forms. AAPS J. 2008;10(2):289-99. doi: 10.1208/s12248-008-9027-6, PMID 18500564.

Chen ML, Shah V, Patnaik R, Adams W, Hussain A, Conner D. Bioavailability and bioequivalence: an FDA regulatory overview. Pharm Res. 2001;18(12):1645-50. doi: 10.1023/a:1013319408893, PMID 11785681.

Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. Int J Pharm Sci Rev Res. 2010;5(1):41-51.

Kovacevic I, Parojcic J, Homsek I, Tubic Grozdanis M, Langguth P. Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharm. 2009;6(1):40-7. doi: 10.1021/mp800128y, PMID 19248231.

Davit BM, Kanfer I, Tsang YC, Cardot JM. BCS biowaivers: similarities and differences among EMA, FDA, and WHO requirements. AAPS J. 2016;18(3):612-8. doi: 10.1208/s12248-016-9877-2, PMID 26943914.

Camara Martinez I, Blechar JA, Ruiz Picazo A, Garcia Arieta A, Calandria C, Merino Sanjuan V. Level a IVIVC for immediate release tablets confirms in vivo predictive dissolution testing for ibuprofen. Int J Pharm. 2022;614:121415. doi: 10.1016/j.ijpharm.2021.121415, PMID 34973409.

Karalis V, Magklara E, Shah VP, Macheras P. From drug delivery systems to drug release, dissolution, IVIVC. BCS: BDDCS, bioequivalence and biowaivers. Springer; 2010.

Qureshi SA. Hot topic: [Drug dissolution testing (Guest Editor: Dr. Saeed A. Qureshi)]. Open Drug Deliv J. 2010;4(1):1-54. doi: 10.2174/1874126601004010001.

Cardot J, Beyssac E, Alric M. In vitro-in vivo correlation: importance of dissolution in IVIVC. Dissolution Technol. 2007;14(1):15-9. doi: 10.14227/DT140107P15.

Bose A, Wui WT. Convolution and validation of in vitro–in vivo correlation of water-insoluble sustained-release drug (domperidone) by first-order pharmacokinetic one-compartmental model fitting equation. Eur J Drug Metab Pharmacokinet. 2013;38(3):191-200. doi: 10.1007/s13318-012-0116-7, PMID 23264125.

Mitra A, Wu Y. Use of in vitro-in vivo correlation (IVIVC) to facilitate the development of polymer-based controlled release injectable formulations. Recent Pat Drug Deliv Formul. 2010;4(2):94-104. doi: 10.2174/187221110791185024, PMID 20214657.

Bangale GS, Shinde G, Rathinaraj BS. New generation of orodispersible tablets: recent advances and future propects. Int J Adv Pharm Sci. 2011;2(1):1-7.

Zayed GM, Rasoul SA, Ibrahim MA, Saddik MS, Alshora DH. In vitro and in vivo characterization of domperidone-loaded fast dissolving buccal films. Saudi Pharm J. 2020;28(3):266-73. doi: 10.1016/j.jsps.2020.01.005, PMID 32194327.

Gupta S, Kapoor V, Kapoor B. Itopride: a novel prokinetic agent. Chemistry; 1995(6).

Chavanpatil M, Jain P, Chaudhari S, Shear R, Vavia P. Development of sustained release gastroretentive drug delivery system for ofloxacin: in vitro and in vivo evaluation. Int J Pharm. 2005;304(1-2):178-84. doi: 10.1016/j.ijpharm.2005.08.009, PMID 16198522.

Malladi M, Jukanti R, Nair R, Wagh S, Padakanti HS, Mateti A. Design and evaluation of taste masked dextromethorphan hydrobromide oral disintegrating tablets. Acta Pharm. 2010;60(3):267-80. doi: 10.2478/v10007-010-0025-8, PMID 21134862.

Vanitasagar S, Srinivas C, Subhashini N, Mallesh K. Solid dispersion-a comparative study on the dissolution rate of aceclofenac. Int J Pharm Pharm Sci. 2012;4Suppl 3:274-8.

Li X, Yang Y, Zhang Y, Wu C, Jiang Q, Wang W. Justification of biowaiver and dissolution rate specifications for piroxicam immediate release products based on physiologically based pharmacokinetic modeling: an in-depth analysis. Mol Pharm. 2019;16(9):3780-90. doi: 10.1021/acs.molpharmaceut.9b00350, PMID 31398041.

Farah K, Syed MFH, Madiha M, Rabia N, Sana G, Iyad NM. Comparative analysis of biopharmaceutic classification system (BCS) based biowaiver protocols to validate equivalence of a multisource product. Afr J Pharm Pharmacol. 2020;14(7):212-20. doi: 10.5897/AJPP2020.5130.

Yang SG. Biowaiver extension potential and IVIVC for BCS Class II drugs by formulation design: case study for cyclosporine self-micro emulsifying formulation. Arch Pharm Res. 2010;33(11):1835-42. doi: 10.1007/s12272-010-1116-2, PMID 21116787.

Balan G, Timmins P, Greene DS, Marathe PH. In vitro–in vivo correlation (IVIVC) models for metformin after administration of modified‐release (MR) oral dosage forms to healthy human volunteers. J Pharm Sci. 2001;90(8):1176-85. doi: 10.1002/jps.1071, PMID 11536222.

Nandy BC, Roy S, Mazumder B, Meena KC, Ahuja D, Makhija M. In vitro–in vivo correlation: application in pharmaceutical development of various dosage forms. J Chem Pharm Res. 2011;3(5):550-64.

Khanal N, Budhathoki U, Bista D, Subedi S. Prediction of in vivo performance of dabigatran capsules marketed in nepal from in vitro (Dissolution) data using numerical convolution method. Afr J Pharm Sci. 2023;3(2):45-58. doi: 10.51483/AFJPS.3.2.2023.45-58.

Mange NV, Desai MS, Gandhi JK, Shah PJ. In vitro and in vivo correlation [IVIVC] for nanoparticulate drug delivery systems. Drug Deliv Lett. 2017;7(3):181-9. doi: 10.2174/2210303107666170929113947.

O’hara T, Hayes S, Davis J, Devane J, Smart T, Dunne A. In vivo–in vitro correlation (IVIVC) modeling incorporating a convolution step. J Pharmacokinet Pharmacodyn. 2001;28(3):277-98. doi: 10.1023/a:1011531226478, PMID 11468941.

Singhvi G, Shah A, Yadav N, Saha RN. Prediction of in vivo plasmaconcentration–time profile from in vitro release data of designed formulations of milnacipran using numerical convolution method. Drug Dev Ind Pharm. 2015;41(1):105-8. doi: 10.3109/03639045.2013.850706, PMID 24164467.

Cho KJ, Cho W, Cha KH, Park J, Kim MS, Kim JS. Pharmacokinetic and bioequivalence study of itopride HCl in healthy volunteers. Arzneimittelforschung. 2010;60(3):137-40. doi: 10.1055/s-0031-1296262, PMID 20422945.

Rohilla S, Rohilla A, Nanda A. Biowaivers: criteria and requirements. Int J Pharm Biol Arch. 2012;3(4):727-31.

Lu CH, Huang YF, Chu IM. Design of oral sustained-release pellets by modeling and simulation approach to improve compliance for repurposing sobrerol. Pharmaceutics. 2022;14(1):167. doi: 10.3390/pharmaceutics14010167, PMID 35057064.

Wu S, Zeng Q, Zhang Z, Zhang X, Hou Y, Li Z. Development of sinomenine hydrochloride sustained-release pellet using a novel whirlwind fluidized bed. J Drug Deliv Sci Technol. 2022;78:103956. doi: 10.1016/j.jddst.2022.103956.

Khan A, Iqbal Z, Khadra I, Ahmad L, Khan A, Khan MI. Simultaneous determination of domperidone and Itopride in pharmaceuticals and human plasma using RP-HPLC/UV detection: method development, validation and application of the method in, in vivo evaluation of fast dispersible tablets. J Pharm Biomed Anal. 2016;121:6-12. doi: 10.1016/j.jpba.2015.12.036, PMID 26773534.

Yehia SA, Elshafeey AH, ElMeshad AN, Al-Bialey H. Formulation and évaluation of itopride microcapsules in human volunteers. J Drug Deliv Sci Technol. 2013;23(3):239-45. doi: 10.1016/S1773-2247(13)50036-0.

Published

07-03-2024

How to Cite

PRAJAPATI, R., KUMAR, B., SAHOO, J., & SHAKYA, S. (2024). APPROACHES ON SURROGATE METHODS FOR IN VIVO BIOEQUIVALENCE STUDY OF FORMULATED BILAYER TABLETS OF DOMPERIDONE AND ITOPRIDE. International Journal of Applied Pharmaceutics, 16(2), 159–165. https://doi.org/10.22159/ijap.2024v16i2.49641

Issue

Section

Original Article(s)