A SYSTEMATIC REVIEW: EXPLORATION OF PROCESS ANALYTICAL TECHNOLOGY TECHNIQUES (PAT) AND THEIR MULTIFACETED ADVANTAGES IN INDUSTRIAL PROCESSES

Authors

  • RAAGUL SEENIVASAN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu. India
  • JEY KUMAR PACHIYAPPAN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu. India
  • MURTHANNAGARI VIVEK REDDY Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu. India https://orcid.org/0000-0002-9077-9657
  • GNK GANESH Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris. Tamilnadu. India

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49772

Keywords:

PAT tools, NIR spectroscopy, Raman spectroscopy, Non-destructive, Real-time monitoring, Dissolution

Abstract

FDA initiated the PAT technology framework in the year of 2004 with the guidelines of “A framework of innovative pharmaceutical development, manufacturing and quality assurance. With that, the International Council for Harmonisation has also initiated continuous process verification to overcome the limitations of traditional methods and improve the understanding of the process and quality of the product throughout the product lifecycle. Since the year of implementation, the advancement of analytical and chemometric tools has evolved to deliver consistent quality products by understanding their process and product performance. However, the pharmaceutical industry was lacking in this technicality and implementation of highly regulated specifications. To this respect, we have stated some of the PAT tools, including NIR, Raman and Terahertz spectroscopy, as they will transfer to the futuristic prospects of analyzing the drug product with non-destructive, improved process understanding, real-time monitoring, and enhanced data integrity. This review article emphasizes the importance of PAT technology with different monitoring processes with their historical background and regulatory framework. Special attention was given to strategies, challenges, opportunities, and the compatibility of PAT tools with data fusion. Further, this will give a high-priority disciplinary scientific topic to Pharma 4.0.

Downloads

Download data is not yet available.

References

Kourti T. The process analytical technology initiative and multivariate process analysis, monitoring and control. Anal Bioanal Chem. 2006;384(5):1043-8. doi: 10.1007/s00216-006-0303-y, PMID 16485088.

De Leersnyder F, Peeters E, Djalabi H, Vanhoorne V, Van Snick B, Hong K. Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press. J Pharm Biomed Anal. 2018;151:274-83. doi: 10.1016/j.jpba.2018.01.032, PMID 29413975.

Gendre C, Genty M, Boiret M, Julien M, Meunier L, Lecoq O. Development of a process analytical technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation. Eur J Pharm Sci. 2011;43(4):244-50. doi: 10.1016/j.ejps.2011.04.017, PMID 21569842.

Næs T, Martens H. Principal component regression in NIR analysis: viewpoints, background details and selection of components. J Chemom. 1988;2(2):155-67. doi: 10.1002/cem.1180020207.

Genin N, Rene F, Corrieu G. A method for on-line determination of residual water content and sublimation end-point during freeze-drying. Chemical Engineering and Processing: Process Intensification. 1996;35(4):255-63. doi: 10.1016/0255-2701(95)04131-1.

Kamat MS, Lodder RA, DeLuca PP. Near-infrared spectroscopic determination of residual moisture in lyophilized sucrose through intact glass vials. Pharm Res. 1989;06(11):961-5. doi: 10.1023/A:1015997530367.

Reddy JP, Jones JW, Wray PS, Dennis AB, Brown J, Timmins P. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy. Int J Pharm. 2018;541(1-2):253-60. doi: 10.1016/j.ijpharm.2018.02.021, PMID 29481947.

Harting J, Kleinebudde P. Optimisation of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation and its application for process characterisation. Eur J Pharm Biopharm. 2019 Apr;137:77-85. doi: 10.1016/j.ejpb.2019.02.015, PMID 30794855.

ICH Expert Working Group. Pharmaceutical development. Q8. ICH Harmon Tripart Guidel; 2009;8:1-28.

Wu H, White M, Khan MA. Quality-by-design (QBD): an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm. 2011;405(1-2):63-78. doi: 10.1016/j.ijpharm.2010.11.045, PMID 21138762.

Rajora A, Chhabra GS. Quality by design approach: regulatory need, current, and future perspective. Asian J Pharm Clin Res. 2021;14(6):29-35. doi: 10.22159/ajpcr.2021.v14i6.33733.

Gnoth S, Jenzsch M, Simutis R, Lubbert A. Process analytical technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control. J Biotechnol. 2007 Oct;132(2):180-6. doi: 10.1016/j.jbiotec.2007.03.020, PMID 17559961.

Goodwin DJ, van den Ban S, Denham M, Barylski I. Real time release testing of tablet content and content uniformity. Int J Pharm. 2018 Feb;537(1-2):183-92. doi: 10.1016/j.ijpharm.2017.12.011, PMID 29229511.

Panzitta M, Calamassi N, Sabatini C, Grassi M, Spagnoli C, Vizzini V. Spectrophotometry and pharmaceutical PAT/RTRT: practical challenges and regulatory landscape from development to product lifecycle. Int J Pharm. 2021;601:120551. doi: 10.1016/j.ijpharm.2021.120551, PMID 33831483.

Ahuja D, Parande D. Optical sensors and their applications. J Sci Res Rev. 2012;1(5):60-8.

Munson J, Freeman Stanfield C, Gujral B. A review of process analytical technology (PAT) in the U.S. Pharmaceutical Industry. Curr Pharm Anal. 2006 Nov 1;2(4):405-14. doi: 10.2174/157341206778699582.

Ciurczak EW. Principles of near-infrared spectroscopy. In: Burns DA, Ciurczak EW, editors. Handbook of near infrared analysis. 2nd ed. CRC Press; 2001. p. 7-18. doi: 10.1201/9781003042204.

Bokobza L. Origin of near-infrared absorption bands. J Near Infrared Spectrosc. 2001:11-41. doi: 10.1002/9783527612666.ch02.

Kawata S. New techniques in near-infrared spectroscopy. In: Near infrared spectroscopy: principles, instruments, applications. Wiley-VCH Verlag GmbH; 2002. p. 75-84. doi: 10.1002/9783527612666.

Candolfi A, Massart DL, Heuerding S. Investigation of sources of variance which contribute to NIR-spectroscopic measurement of pharmaceutical formulations. Anal Chim Acta. 1997;345(1-3):185-96. doi: 10.1016/S0003-2670(97)00059-7.

Kawano S. Sampling and sample presentation. In: Siesler HW, Ozaki Y, Kawata S, Heise HM, editors. Near infrared spectroscopy: principles, instruments, applications. Wiley-VCH Verlag GmbH; 2002. p. 115-24.

Heise HM, Winzen R. Fundamental chemometric methods. In: Siesler HW, Ozaki Y, Kawata S, Heise HM, editors. Near infrared spectroscopy: principles, instruments, applications. Wiley-VCH Verlag GmbH; 2002. p. 125-62.

Naes T, Isaksson T, Fearn T, Davies T. Multivariate calibration and classification. NIR Publications; 2002.

Sarraguça MC, Lopes JA. Quality control of pharmaceuticals with NIR: from lab to process line. Vib Spectrosc. 2009;49(2):204-10. doi: 10.1016/j.vibspec.2008.07.013.

Chalus P, Roggo Y, Walter S, Ulmschneider M. Near-infrared determination of active substance content in intact low-dosage tablets. Talanta. 2005 Jun 15;66(5):1294-302. doi: 10.1016/j.talanta.2005.01.051, PMID 18970121.

Blanco M, Alcala M, Gonzalez JM, Torras E. Near infrared spectroscopy in the study of polymorphic transformations. Anal Chim Acta. 2006 May;567(2):262-8. doi: 10.1016/j.aca.2006.03.036.

Shi Z, Cogdill RP, Short SM, Anderson CA. Process characterization of powder blending by near-infrared spectroscopy: blend end-points and beyond. J Pharm Biomed Anal. 2008 Aug;47(4-5):738-45. doi: 10.1016/j.jpba.2008.03.013, PMID 18486399.

Rantanen J, Wikstrom H, Turner R, Taylor LS. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Anal Chem. 2005;77(2):556-63. doi: 10.1021/ac048842u, PMID 15649053.

El-Hagrasy AS, Delgado Lopez M, Drennen JK. A process analytical technology approach to near-infrared process control of pharmaceutical powder blending: Part II: Qualitative near-infrared models for prediction of blend homogeneity. J Pharm Sci. 2006 Feb;95(2):407-21. doi: 10.1002/jps.20466, PMID 16380974.

Grohganz H, Fonteyne M, Skibsted E, Falck T, Palmqvist B, Rantanen J. Role of excipients in the quantification of water in lyophilised mixtures using NIR spectroscopy. J Pharm Biomed Anal. 2009 May;49(4):901-7. doi: 10.1016/j.jpba.2009.01.021, PMID 19217736.

Colon YM, Vargas J, Sanchez E, Navarro G, Romañach RJ. Assessment of robustness for a near-infrared concentration model for real-time release testing in a continuous manufacturing process. J Pharm Innov. 2017;12(1):14-25. doi: 10.1007/s12247-016-9265-6.

Bittner LK, Heigl N, Petter CH, Noisternig MF, Griesser UJ, Bonn GK. Near-infrared reflection spectroscopy (NIRS) as a successful tool for simultaneous identification and particle size determination of amoxicillin trihydrate. J Pharm Biomed Anal. 2011 Apr;54(5):1059-64. doi: 10.1016/j.jpba.2010.12.019, PMID 21232895.

Dahm DJ, Dahm KD. Review: formulae for absorption spectroscopy related to idealised cases. J Near Infrared Spectrosc. 2014 Jan 1;22(4):249-59. doi: 10.1255/jnirs.1123.

Singh R, Roman Ospino AD, Romanach RJ, Ierapetritou M, Ramachandran R. Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of a continuous direct compaction tablet manufacturing process. Int J Pharm. 2015 Nov;495(1):612-25. doi: 10.1016/j.ijpharm.2015.09.029, PMID 26386140.

Roman Ospino AD, Singh R, Ierapetritou M, Ramachandran R, Mendez R, Ortega Zuniga C. Near infrared spectroscopic calibration models for real time monitoring of powder density. Int J Pharm. 2016 Oct;512(1):61-74. doi: 10.1016/j.ijpharm.2016.08.029, PMID 27543356.

Ortega Zuniga C, la Rosa CPD, Roman Ospino AD, Serrano Vargas A, Romanach RJ, Mendez R. Development of near infrared spectroscopic calibration models for in-line determination of low drug concentration, bulk density, and relative specific void volume within a feed frame. J Pharm Biomed Anal. 2019 Feb;164:211-22. doi: 10.1016/j.jpba.2018.10.046, PMID 30391810.

Talwar S, Nunes C, Stevens T, Nesarikar V, Timmins P, Anderson CA. Understanding the impact of chemical variability and calibration algorithms on prediction of solid fraction of roller compacted ribbons using near-infrared (NIR) spectroscopy. Appl Spectrosc. 2017;71(6):1209-21. doi: 10.1177/0003702816671960, PMID 27815436.

Guo Y, Shalaev E, Smith S. Physical stability of pharmaceutical formulations: solid-state characterization of amorphous dispersions. TrAC Trends Anal Chem. 2013 Sep;49:137-44. doi: 10.1016/j.trac.2013.06.002.

Davis TD, Peck GE, Stowell JG, Morris KR, Byrn SR. Modeling and monitoring of polymorphic transformations during the drying phase of wet granulation. Pharm Res. 2004 May;21(5):860-6. doi: 10.1023/b:pham.0000026440.00508.cf. PMID 15180346.

Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund KG. Quantitative analysis of film coating in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal Chem. 2000 Mar 28;72(9):2099-108. doi: 10.1021/ac990256r, PMID 10815972.

Herkert T, Prinz H, Kovar KA. One hundred percent online identity check of pharmaceutical products by near-infrared spectroscopy on the packaging line. Eur J Pharm Biopharm. 2001 Jan;51(1):9-16. doi: 10.1016/s0939-6411(00)00126-0, PMID 11154898.

Strachan CJ, Rades T, Gordon KC, Rantanen J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J Pharm Pharmacol. 2007 Feb;59(2):179-92. doi: 10.1211/jpp.59.2.0005, PMID 17270072.

Hedoux A, Guinet Y, Descamps M. The contribution of Raman spectroscopy to the analysis of phase transformations in pharmaceutical compounds. Int J Pharm. 2011 Sep;417(1-2):17-31. doi: 10.1016/j.ijpharm.2011.01.031, PMID 21256937.

De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm. 2011 Sep;417(1-2):32-47. doi: 10.1016/j.ijpharm.2010.12.012, PMID 21167266.

Muller J, Knop K, Wirges M, Kleinebudde P. Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. J Pharm Biomed Anal. 2010 Dec;53(4):884-94. doi: 10.1016/j.jpba.2010.06.016, PMID 20638213.

Wang F, Wachter JA, Antosz FJ, Berglund KA. An investigation of solvent-mediated polymorphic transformation of progesterone using in situ Raman spectroscopy. Org Process Res Dev. 2000 Aug 19;4(5):391-5. doi: 10.1021/op000210w.

Misra NN, Sullivan C, Cullen PJ. Process analytical technology (PAT) and multivariate methods for downstream processes. Curr Biochem Eng. 2015 Apr 13;2(1):4-16. doi: 10.2174/2213385203666150219231836.

Kim M, Chung H, Woo Y, Kemper MS. A new non-invasive, quantitative Raman technique for the determination of an active ingredient in pharmaceutical liquids by direct measurement through a plastic bottle. Anal Chim Acta. 2007;587(2):200-7. doi: 10.1016/j.aca.2007.01.062, PMID 17386774.

Park SC, Kim M, Noh J, Chung H, Woo Y, Lee J. Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy. Anal Chim Acta. 2007;593(1):46-53. doi: 10.1016/j.aca.2007.04.056, PMID 17531823.

Wikstrom H, Romero Torres S, Wongweragiat S, Williams JAS, Grant ER, Taylor LS. On-line content uniformity determination of tablets using low-resolution Raman spectroscopy. Appl Spectrosc. 2006;60(6):672-81. doi: 10.1366/000370206777670684, PMID 16808869.

de Veij M, Vandenabeele P, Hall KA, Fernandez FM, Green MD, White NJ. Fast detection and identification of counterfeit antimalarial tablets by Raman spectroscopy. J Raman Spectroscopy. 2007;38(2):181-7. doi: 10.1002/jrs.1621.

Roggo Y, Degardin K, Margot P. Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics. Talanta. 2010;81(3):988-95. doi: 10.1016/j.talanta.2010.01.046, PMID 20298883.

Kauffman JF, Dellibovi M, Cunningham CR. Raman spectroscopy of coated pharmaceutical tablets and physical models for multivariate calibration to tablet coating thickness. J Pharm Biomed Anal. 2007;43(1):39-48. doi: 10.1016/j.jpba.2006.06.017, PMID 16860508.

Doctor J, Thakkar P, Prajapati M, Patel NR, Mehta PJ. Non-destructive Raman spectroscopic method for estimation of montelukast from tablet dosages form. Int J Pharm Pharm Sci. 2017 Jun 1;9(6):161. doi: 10.22159/ijpps.2017v9i6.14043.

Published

07-03-2024

How to Cite

SEENIVASAN, R., PACHIYAPPAN, J. K., VIVEK REDDY, M., & GANESH, G. (2024). A SYSTEMATIC REVIEW: EXPLORATION OF PROCESS ANALYTICAL TECHNOLOGY TECHNIQUES (PAT) AND THEIR MULTIFACETED ADVANTAGES IN INDUSTRIAL PROCESSES. International Journal of Applied Pharmaceutics, 16(2), 44–51. https://doi.org/10.22159/ijap.2024v16i2.49772

Issue

Section

Review Article(s)

Most read articles by the same author(s)