ADVANCEMENTS IN MICRONEEDLE TECHNOLOGY: COMPREHENSIVE INSIGHTS INTO VERSATILE DRUG DELIVERY MECHANISMS

Authors

  • LOKESWAR SEKAR Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0005-7720-9405
  • RAAGUL SEENIVASAN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-3763-3528
  • M. VIVEK REDDY Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-9077-9657
  • K. DILEEP VARMA Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-5791-4204
  • SYED SUHAIB AHMED Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-0290-2003
  • JEY KUMAR PACHIYAPPAN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-7882-9287
  • GNK GANESH Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0003-1326-3574

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49564

Keywords:

Microneedles, Drug delivery, Bio-degradable polymers, 3D printing, Nanoparticles, Peptide drug delivery

Abstract

Microneedle-based transdermal medication administration is a revolutionary drug delivery technique that has advantages over parenteral and oral drug delivery systems. They are convenient, painless, safe, and effective. Due to the skin’s stratum corneum layer, the majority of drugs only have a limited impact, which constitutes a thickness of about 10 to 15 µm and acts as a barrier for molecules to reach the site of action, allowing just a few molecules to pass through. To overcome this, many researchers have concentrated on using microneedles to bypass the stratum corneum barrier. The main goal of microneedles is to get the drug into the epidermis without disrupting nerve endings. Micron-sized channels created by the skin layer being broken by microneedles transport the medication directly to the epidermis or higher dermis, avoiding the barrier layer and into the systemic circulation. As a result, the microneedle can improve transdermal drug delivery. Microneedles are fabricated in different forms, such as “Solid Microneedles,” “Coated Microneedles,” “Dissolving or Biodegradable Microneedles,” “Hollow Microneedles” and Hydrogel-forming Microneedles, through the use of components including polymers, polysaccharides, silicon, and metals. Micromolding, laser cutting, dip coating, 3D printing and its techniques are just a few of the processes used to make microneedles. Recently, microneedles have become popular for delivering drugs, genes, proteins, RNA and vaccines, demonstrating significant therapeutic effects. A variety of nano-carriers, along with different delivery methods, assist in emphasizing the use of microneedles in the meantime.

Downloads

Download data is not yet available.

References

Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227-37. doi: 10.1016/j.jconrel.2006.10.017, PMID 17169459.

Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine. 2005;1(2):184-90. doi: 10.1016/j.nano.2005.03.001, PMID 17292077.

HA AKL LL. Pharmaceutical dosage forms: parenteral modifications. New York: Marcel Dekker Inc; 1992.

Simonsen L, Kane A, Lloyd J, Zaffran M, Kane M. Unsafe injections in the developing world and transmission of bloodborne pathogens: a review. Bull World Health Organ. 1999;77(10):789-800. PMID 10593026, PMCID PMC2557743.

Ito Y, Hirono M, Fukushima K, Sugioka N, Takada K. Two-layered dissolving microneedles formulated with intermediate-acting insulin. Int J Pharm. 2012;436(1-2):387-93. doi: 10.1016/j.ijpharm.2012.06.047, PMID 22750407.

Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581-7. doi: 10.1016/j.addr.2003.10.023, PMID 15019747.

Matteucci M, Casella M, Bedoni M, Donetti E, Fanetti M, De Angelis F. A compact and disposable transdermal drug delivery system. Microelectron Eng. 2008;85(5-6):1066-73. doi: 10.1016/j.mee.2007.12.067.

Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine. 2008;26(26):3197-208. doi: 10.1016/j.vaccine.2008.03.095, PMID 18486285.

Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7(3):90-105. doi: 10.3390/pharmaceutics7030090, PMID 26131647.

Teo AL, Shearwood C, Ng KC, Lu J, Moochhala S. Transdermal microneedles for drug delivery applications. Mater Sci Eng B. 2006;132(1-2):151-4. doi: 10.1016/j.mseb.2006.02.008.

Teo MAL, Shearwood C, Ng KC, Lu J, Moochhala S. In vitro and in vivo characterization of MEMS microneedles. Biomed Microdevices. 2005;7(1):47-52. doi: 10.1007/s10544-005-6171-y, PMID 15834520.

Ventrelli L, Marsilio Strambini L, Barillaro G. Microneedles for transdermal biosensing: current picture and future direction. Adv Healthc Mater. 2015;4(17):2606-40. doi: 10.1002/adhm.201500450, PMID 26439100.

Chen W, Li H, Shi D, Liu Z, Yuan W. Microneedles as a delivery system for gene therapy. Front Pharmacol. 2016;7:137. doi: 10.3389/fphar.2016.00137, PMID 27303298.

Li WZ, Huo MR, Zhou JP, Zhou YQ, Hao BH, Liu T. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1-2):122-9. doi: 10.1016/j.ijpharm.2010.01.024, PMID 20096759.

McCrudden MT, McAlister E, Courtenay AJ, Gonzalez Vazquez P, Singh TR, Donnelly RF. Microneedle applications in improving skin appearance. Exp Dermatol. 2015;24(8):561-6. doi: 10.1111/exd.12723, PMID 25865925.

Shah MAA, He N, Li Z, Ali Z, Zhang L. Nanoparticles for DNA vaccine delivery. J Biomed Nanotechnol. 2014;10(9):2332-49. doi: 10.1166/jbn.2014.1981, PMID 25992460.

Hardy JG, Larraneta E, Donnelly RF, McGoldrick N, Migalska K, McCrudden MT. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm. 2016;13(3):907-14. doi: 10.1021/acs.molpharmaceut.5b00807, PMID 26795883.

Li J, Zeng M, Shan H, Tong C. Microneedle patches as drug and vaccine delivery platform. Curr Med Chem. 2017;24(22):2413-22. doi: 10.2174/0929867324666170526124053, PMID 28552053.

Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34(11):2223-40. doi: 10.1007/s11095-017-2223-2, PMID 28718050.

Cheung K, Das DB. Microneedles for drug delivery: trends and progress. Drug Deliv. 2016;23(7):2338-54. doi: 10.3109/10717544.2014.986309, PMID 25533874.

Caffarel Salvador E, Tuan Mahmood TM, McElnay JC, McCarthy HO, Mooney K, Woolfson AD. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1-2):158-69. doi: 10.1016/j.ijpharm.2015.04.076, PMID 25940042.

Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2):227-36. doi: 10.1016/j.ijpharm.2008.08.032, PMID 18805472.

Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv. 2009;6(4):343-54. doi: 10.1517/17425240902841935, PMID 19348604.

Li S, Li W, Prausnitz M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv Transl Res. 2018;8(5):1043-52. doi: 10.1007/s13346-018-0549-x, PMID 29948917.

Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51-66. doi: 10.1016/j.jconrel.2005.02.002, PMID 15866334.

Gittard SD, Ovsianikov A, Monteiro Riviere NA, Lusk J, Morel P, Minghetti P. Fabrication of polymer microneedles using a two-photon polymerization and micro molding process. J Diabetes Sci Technol. 2009;3(2):304-11. doi: 10.1177/193229680900300211, PMID 20144361.

Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21(6):947-52. doi: 10.1023/b:pham.0000029282.44140.2e, PMID 15212158.

Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N. Metal microneedle fabrication using twisted light with spin. Opt Express. 2010;18(17):17967-73. doi: 10.1364/OE.18.017967, PMID 20721183.

O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16(3):333-43. doi: 10.1007/s10544-014-9836-6, PMID 24487507.

Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: a brief review of two decades. Int J Pharm. 2021;597:120301. doi: 10.1016/j.ijpharm.2021.120301, PMID 33540018.

Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425-32. doi: 10.1016/j.ijpharm.2018.03.031, PMID 29555437.

O’Mahony C. Structural characterization and in vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16(3):333-43. doi: 10.1007/s10544-014-9836-6, PMID 24487507.

Forvi E, Soncini M, Bedoni M, Rizzo F, Casella M, O’Mahony C. A method to determine the margin of safety for microneedles arrays. In: Proceedings of the world congress on engineering; 2010. p. 1150-4.

Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155-63. doi: 10.1016/j.jbiomech.2003.12.010, PMID 15212920.

Uppuluri C, Shaik AS, Han T, Nayak A, Nair KJ, Whiteside BR. Effect of microneedle type on transdermal permeation of rizatriptan. AAPS PharmSciTech. 2017;18(5):1495-506. doi: 10.1208/s12249-016-0702-0, PMID 28078629.

Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92(2):502-4. doi: 10.1097/00000539-200102000-00041, PMID 11159258.

Long J, Yang Y, Kang T, Zhao W, Cheng H, Wu Y. Ovarian cancer therapy by VSVMP gene mediated by a paclitaxel-enhanced nanoparticle. ACS Appl Mater Interfaces. 2017;9(45):39152-64. doi: 10.1021/acsami.7b10796, PMID 28944654.

Shi D, Ran M, Zhang L, Huang H, Li X, Chen M. Fabrication of biobased polyelectrolyte capsules and their application for glucose-triggered insulin delivery. ACS Appl Mater Interfaces. 2016;8(22):13688-97. doi: 10.1021/acsami.6b02121, PMID 27210795.

Lin W, Cormier M, Samiee A, Griffin A, Johnson B, Teng CL. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res. 2001;18(12):1789-93. doi: 10.1023/a:1013395102049, PMID 11785702.

Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8:177-200. doi: 10.1146/annurev-chembioeng-060816-101514, PMID 28375775.

Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1-32. doi: 10.1016/j.mser.2016.03.001.

Serrano G, Almudever P, Serrano JM, Cortijo J, Faus C, Reyes M. Microneedling dilates the follicular infundibulum and increases transfollicular absorption of liposomal sepia melanin. Clin Cosmet Investig Dermatol. 2015;8:313-8. doi: 10.2147/CCID.S77228, PMID 26170707.

Bhatnagar S, Kumari P, Pattarabhiran SP, Venuganti VVK. Zein microneedles for localized delivery of chemotherapeutic agents to treat breast cancer: drug loading, release behavior, and skin permeation studies. AAPS PharmSciTech. 2018;19(4):1818-26. doi: 10.1208/s12249-018-1004-5, PMID 29616489.

Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29(37):1702243. doi: 10.1002/adma.201702243, PMID 28714117.

Ye Y, Yu J, Wang C, Nguyen NY, Walker GM, Buse JB. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv Mater. 2016;28(16):3115-21. doi: 10.1002/adma.201506025, PMID 26928976.

Lee J, Park SH, Seo IH, Lee KJ, Ryu W. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally drawn micromolds. Eur J Pharm Biopharm. 2015;94:11-9. doi: 10.1016/j.ejpb.2015.04.024, PMID 25936857.

Poirier D, Renaud F, Dewar V, Strodiot L, Wauters F, Janimak J. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials Biomaterials. 2017;145:256-65. doi: 10.1016/j.biomaterials.2017.08.038, PMID 28915391.

Liang R, Zhao J, Li B, Cai P, Loh XJ, Xu C. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials. 2020;230:119601. doi: 10.1016/j.biomaterials.2019.119601, PMID 31711715.

Vora LK, Courtenay AJ, Tekko IA, Larrañeta E, Donnelly RF. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int J Biol Macromol. 2020;146:290-8. doi: 10.1016/j.ijbiomac.2019.12.184, PMID 31883883.

Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient-friendly approach to manage arthritis. Eur J Pharm Sci. 2017;104:114-23. doi: 10.1016/j.ejps.2017.04.001, PMID 28385631.

Chen J, Huang W, Huang Z, Liu S, Ye Y, Li Q. Fabrication of tip-dissolving microneedles for transdermal drug delivery of meloxicam. AAPS PharmSciTech. 2018 Apr;19(3):1141-51. doi: 10.1208/s12249-017-0926-7, PMID 29218581.

Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58(2):226-42. doi: 10.1016/j.addr.2006.01.018, PMID 16574267.

Abla MJ, Chaturvedula A, O’Mahony C, Banga AK. Transdermal delivery of methotrexate for pediatrics using silicon microneedles. Ther Deliv. 2013 May;4(5):543-51. doi: 10.4155/tde.13.24, PMID 23647273.

Shende P, Salunke M. Transepidermal microneedles for co-administration of folic acid with methotrexate in the treatment of rheumatoid arthritis. Biomed Phys Eng Express. 2019;5(2):025023. doi: 10.1088/2057-1976/aafbbb.

Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release. 2008;129(2):144-50. doi: 10.1016/j.jconrel.2008.04.019, PMID 18538885.

Zhang Y, Hu H, Jing Q, Wang Z, He Z, Wu T. Improved biosafety and transdermal delivery of aconitine via diethylene glycol monoethyl ether-mediated microemulsion assisted with microneedles. Pharmaceutics. 2020;12(2):163. doi: 10.3390/pharmaceutics12020163, PMID 32079146.

Guo T, Zhang Y, Li Z, Zhao J, Feng N. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from aconitum sinomontanum. Artif Cells Nanomed Biotechnol. 2018;46(8):1541-51. doi: 10.1080/21691401.2017.1376676, PMID 28899209.

Wu X, Chen Y, Gui S, Wu X, Chen L, Cao Y. Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits. Pharm Dev Technol. 2016;21(7):787-93. doi: 10.3109/10837450.2015.1055766, PMID 26122959.

Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155-63. doi: 10.1016/j.jbiomech.2003.12.010, PMID 15212920.

Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5(2):253-9. doi: 10.1016/j.bioactmat.2020.02.004, PMID 32128464.

Yang XX, Feng P, Cao J, Liu W, Tang Y. Composition-engineered metal–organic framework-based microneedles for glucose-mediated transdermal insulin delivery. ACS Appl Mater Interfaces. 2020;12(12):13613-21. doi: 10.1021/acsami.9b20774, PMID 32138507.

Yang G, Chen Q, Wen D, Chen Z, Wang J, Chen G. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano. 2019 Apr 23;13(4):4354-60. doi: 10.1021/acsnano.8b09573, PMID 30942567.

Mao J, Wang H, Xie Y, Fu Y, Li Y, Liu P. Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis. J Mater Chem B. 2020;8(5):928-34. doi: 10.1039/c9tb00912d, PMID 31912081.

Chang H, Chew SWT, Zheng M, Lio DCS, Wiraja C, Mei Y. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng. 2021;5(9):1008-18. doi: 10.1038/s41551-021-00720-1, PMID 33941895.

Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Poly (vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. Int J Pharm. 2020;576:118907. doi: 10.1016/j.ijpharm.2019.118907, PMID 31870955.

Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun. 2017;8(1):1777. doi: 10.1038/s41467-017-01764-1, PMID 29176623.

Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng. 2020;4(5):499-506. doi: 10.1038/s41551-019-0508-y, PMID 32015407.

Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA. 2015;112(27):8260-5. doi: 10.1073/pnas.1505405112, PMID 26100900.

Chakrabarty S, Bhattacharya J, Chowdhury A, Roy P, Kumar Jha S. Needle-free monitoring of blood glucose through reverse iontophoresis. Int J App Pharm. 2022;14(4):26-34. doi: 10.22159/ijap.2022v14i4.44288.

Cao J, Zhang N, Wang Z, Su J, Yang J, Han J. Microneedle-assisted transdermal delivery of etanercept for rheumatoid arthritis treatment. Pharmaceutics. 2019;11(5):235. doi: 10.3390/pharmaceutics11050235, PMID 31096705.

Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. Vol. 55; 2020. doi: 10.1016/j.ebiom.2020.102743, Available from: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30118-3/fulltext. [Last accessed on 06 Nov 2023]

Li J, Zeng M, Shan H, Tong C. Microneedle patches as drug and vaccine delivery platform. Curr Med Chem. 2017;24(22):2413-22. doi: 10.2174/0929867324666170526124053, PMID 28552053.

Shah MAA, He N, Li Z, Ali Z, Zhang L. Nanoparticles for DNA vaccine delivery. J Biomed Nanotechnol. 2014;10(9):2332-49. doi: 10.1166/jbn.2014.1981, PMID 25992460.

Ali AA, McCrudden CM, McCaffrey J, McBride JW, Cole G, Dunne NJ. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine. 2017;13(3):921-32. doi: 10.1016/j.nano.2016.11.019, PMID 27979747.

Takeuchi K, Takama N, Sharma K, Paul O, Ruther P, Suga T. Microfluidic chip connected to porous microneedle array for continuous ISF sampling. Drug Deliv Transl Res. 2022 Feb;12(2):435-43. doi: 10.1007/s13346-021-01050-0, PMID 34739717.

Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68. doi: 10.1016/j.addr.2012.04.005, PMID 22575858.

choudhury D, Koushik Nandan Dutta, Ramen Kalita. A review on transdermal patches used as an anti-inflammatory agent. Asian Journal of Pharmaceutical Clinical Research 2021;14(12):21-6.

DRK, KMG. A review on role of markers in diabetes mellitus and associated micro and macrovascular complications. Int J Curr Pharm Sci. 2022;14(1, Jan):20-6. doi: 10.22159/ijcpr.2022v14i1.44108.

Manoj VR, Manoj H. Review on transdermal microneedle-based drug delivery. Asian J Pharm Clin Res. 2019;12(1, Jan):18-29. doi: 10.22159/ajpcr.2018.v12i1.27434.

Kaur R, Arora S, Goswami M. Evaluation of fabricated solid microneedles as smart approach for transdermal drug delivery system of astaxanthin. Int J App Pharm. 2023;15(5):255-62. doi: 10.22159/ijap.2023v15i5.48421.

Published

07-03-2024

How to Cite

SEKAR, L., SEENIVASAN, R., REDDY, M. V., VARMA, K. D., AHMED, S. S., PACHIYAPPAN, J. K., & GANESH, G. (2024). ADVANCEMENTS IN MICRONEEDLE TECHNOLOGY: COMPREHENSIVE INSIGHTS INTO VERSATILE DRUG DELIVERY MECHANISMS. International Journal of Applied Pharmaceutics, 16(2), 1–11. https://doi.org/10.22159/ijap.2024v16i2.49564

Issue

Section

Review Article(s)

Most read articles by the same author(s)