EXPLORATION OF THE ACTIVE COMPOUNDS OF MORINGA OLEIFERA LAM AS HIV-1 REVERSE TRANSCRIPTASE INHIBITOR: A NETWORK PHARMACOLOGY AND MOLECULAR DOCKING APPROACH

Authors

  • MELANDA FITRIANA Graduate Program, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI-16424, Indonesia https://orcid.org/0009-0007-2992-5313
  • ABDUL MUN’IM Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI-16424, Indonesia
  • FIRDAYANI Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang-15314, Indonesia https://orcid.org/0000-0001-9967-917X
  • WIRAWAN ADIKUSUMA Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang-15314, Indonesia https://orcid.org/0000-0001-9165-690X

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49855

Keywords:

HIV-1 reverse transcriptase, Moringa oleifera, Network pharmacology, Molecular docking

Abstract

Objective: This study aims to predict the active compound of Moringa oleifera for the treatment of Human Immunodeficiency Virus (HIV), specifically targeting the HIV-1 reverse transcriptase (HIV-1 RT) enzyme using network pharmacology and molecular docking approach.

Methods: The active ingredients of M. oleifera, were screened from the Knapsack database. Subsequently, HIV-1 RT and its related target compounds were retrieved from the Genecard database. The analysis of common targets involved protein-protein interactions (PPI) analysis using string databases and constructing interaction IDs using Cytoscape software. Gene Ontology (GO) functional and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Molecular docking studies were conducted using AutoDock Vina software to validate the results of the network pharmacological analysis.

Results: A total of 63 active ingredients and 8601 targets related to HIV-1 RT were identified. The network analysis, encompassing GO and KEGG enrichment, revealed strong associations of common targets with key signaling pathways such as Tumor Necrosis Factor (TNF), Toll Like Receptor (TLR), and apoptosis. Additionally, 11 compounds of M. oleifera including apigenin, benzyl isothiocyanate, benzylamine, caffeic acid, ferulic acid, epicatechin, kaempferol, gallic acid, luteolin, syringic acid and vanillin were identified as potential vital compounds. Molecular docking analysis highlighted apigenin and kaempferol as the most promising compounds, exhibiting the lowest binding affinity to the HIV-1 RT enzyme. These compounds correlated with caspase-3(CASP3), caspase-9 (CASP9), and BCL2 Apoptosis Regulator (BAX) protein, stimulating cell apoptosis through multiple pathways. 

Conclusion: The study highlighted that apigenin and kaempferol are potential compound of M. oleifera in HIV-1 treatment through inhibition activity at HIV-1 RT Enzyme.

Downloads

Download data is not yet available.

References

WHO. UNAIDS data 2023. Geneva: joint United Nations programme on HIV/AIDS; 2023.

Sharma A, Rangari V. HIV-1 reverse transcriptase and protease assay of methanolic extracts of Adansonia digitata L. Int J Pharm Pharm Sci. 2016 Sep 1;8(9):124-7. doi: 10.22159/ijpps.2016v8i9.12485.

Ndhlala A, Cele K, Mulaudzi R, du Plooy C, Venter S, Mashela P. The potential of Moringa oleifera lam. to manage HIV-1 infections and its positive pharmaco-synergy with antiretroviral therapies. Planta Med. Georg Thieme verlag KG. 2016 Dec 14;81(S 01):S1-S381.

Patel PH, Zulfiqar H. Reverse transcriptase inhibitors. Frontiers in HIV Research. Stat. 2023 Jun 25:44-61. PMID 31855348.

Ndhlala AR, Van Staden J, Mashela PW, Du Plooy CP, Abdelgadir HA. Pharmaco-synergistic potential of Moringa oleifera lam. with antiretroviral therapies in managing HIV-1 infections. S Afr J Bot. 2017 Mar;109:358-9.

Aprioku JS, Robinson O, Obianime AW, Tamuno I. Moringa supplementation improves immunological indices and hematological abnormalities in seropositive patients receiving HAARTs. Afr Health Sci. 2022;22(2):1-11. doi: 10.4314/ahs.v22i2.2, PMID 36407401.

Hamed MM, Abdalla AM, Ghareeb MA, Saleh SA. Chemical constituents, in vitro antioxidant activity, oral acute toxicity and LD50 determination of Moringa oleifera leaves. Int J Pharm Pharm Sci. 2017 May 1;9(5). doi: 10.22159/ijpps.2017v9i5.17834.

Chhikara N, Kaur A, Mann S, Garg MK, Sofi SA, Panghal A. Bioactive compounds, associated health benefits and safety considerations of Moringa oleifera L.: an updated review. Nutr Food Sci. 2021;51(2):255-77. doi: 10.1108/NFS-03-2020-0087.

Salama RA, Mohamed M, Shakweer M, Mohamed MM, Elwahab MBA, Shakweer MM. Assessment effect of Aloe vera, Azadirachta indica and Moringa oleifera aqueous extracts on carbon tetrachloride-induced hepatotoxicity in rats. Int J Pharm Pharm Sci. 2016;8(4):83-9.

Kerdsomboon K, Chumsawat W, Auesukaree C. Effects of Moringa oleifera leaf extracts and its bioactive compound gallic acid on reducing toxicities of heavy metals and metalloid in Saccharomyces cerevisiae. Chemosphere. 2021 May 1;270:128659. doi: 10.1016/j.chemosphere.2020.128659, PMID 33757277.

Ntlhamu MI, Ndhlala AR, Masoko P. Exploring the anti-HIV-1 reverse transcriptase, anti-inflammatory, anticancer activities and cytotoxicity of two fermented commercial herbal concoctions sold in limpopo province of South Africa. BMC Complement Med Ther. 2021 Dec 1;21(1):151. doi: 10.1186/s12906-021-03321-2, PMID 34039320.

Hamany Djande CY, Piater LA, Steenkamp PA, Madala NE, Dubery IA. Differential extraction of phytochemicals from the multipurpose tree, Moringa oleifera, using green extraction solvents. S Afr J Bot. 2018 Mar 1;115:81-9. doi: 10.1016/j.sajb.2018.01.009.

Afendi FM, Okada T, Yamazaki M, Hirai Morita A, Nakamura Y, Nakamura K. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012 Feb;53(2):e1. doi: 10.1093/pcp/pcr165, PMID 22123792.

Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015 May 14;58(9):4066-72. doi: 10.1021/acs.jmedchem.5b00104, PMID 25860834.

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 Jul 2;46(W1):W257-63. doi: 10.1093/nar/gky318, PMID 29718510.

Walters WP. Going further than Lipinski’s rule in drug design. Expert Opin Drug Discov. 2012 Feb 13;7(2):99-107. doi: 10.1517/17460441.2012.648612, PMID 22468912.

Ya’u Ibrahim Z, Uzairu A, Shallangwa G, Abechi S. Molecular docking studies, drug-likeness and in silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Sci Afr. 2020 Nov;10:e00570.

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan‐Golan Y, Kohn A, Rappaport N, Safran M, Lancet D. The gene cards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016 Jun 20;54(1).

Liu F, Li Y, Yang Y, Li M, Du Y, Zhang Y. Study on mechanism of matrine in treatment of COVID-19 combined with liver injury by network pharmacology and molecular docking technology. Drug Deliv. 2021 Jan 1;28(1):325-42. doi: 10.1080/10717544.2021.1879313, PMID 33517789.

Zhuang Z, Wen J, Zhang L, Zhang M, Zhong X, Chen H. Can network pharmacology identify the anti-virus and anti-inflammatory activities of shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur J Integr Med. 2020 Aug;37:101139. doi: 10.1016/j.eujim.2020.101139, PMID 32501408.

Huang X, Rehman HM, Szollosi AG, Zhou S. Network pharmacology-based approach combined with bioinformatic analytics to elucidate the potential of curcumol against hepatocellular carcinoma. Genes (Basel). 2022 Apr 7;13(4):653. doi: 10.3390/genes13040653, PMID 35456457.

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020 Apr 15;36(8):2628-9. doi: 10.1093/bioinformatics/btz931, PMID 31882993.

Li X, Wen Z, Si M, Jia Y, Liu H, Zheng Y. Exploration of hanshi zufei prescription for treatment of COVID-19 based on network pharmacology. Chin Herb Med. 2022 Apr;14(2):294-302. doi: 10.1016/j.chmed.2021.06.006, PMID 35382000.

Alom MdM, Bonna RP, Islam A, Alom MdW, Rahman MdE, Faruqe MO. Unveiling neuroprotective potential of spice plant-derived compounds against Alzheimer’s disease: insights from computational studies. Int J Alzheimers Dis. 2023 Sep 15;2023:8877757. doi: 10.1155/2023/8877757, PMID 37744007.

Tarasova O, Poroikov V, Veselovsky A. Molecular docking studies of HIV-1 resistance to reverse transcriptase inhibitors: mini-review. Molecules. 2018 May 21;23(5):1233. doi: 10.3390/molecules23051233, PMID 29883406.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/jcc.20084, PMID 15264254.

DVD, S Visualizer. Accelrys software Inc. Discov Studio Visualizer Visualizer; 2005. p. 2.

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx; 2015. p. 243-50.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011 Dec 7;3(1):33. doi: 10.1186/1758-2946-3-33, PMID 21982300.

Krieger E, Vriend G, Spronk C. YASARA-yet another scientific artificial reality application. YASARA Org. 2013;993:51-78.

Nurhasanah N, Fadilah F, Bahtiar A. Prediction of active compounds of muntingia calabura as potential treatment for chronic obstructive pulmonary diseases by network pharmacology integrated with molecular docking. Int J App Pharm. 2023 Jan 7;15(1):274-9. doi: 10.22159/ijap.2023v15i1.46281.

Iheagwam FN, Ogunlana OO, Ogunlana OE, Isewon I, Oyelade J. Potential anti-cancer flavonoids isolated from Caesalpinia bonduc young twigs and leaves: molecular docking and in silico studies. Bioinform Biol Insights. 2019 Jan 7;13:1177932218821371. doi: 10.1177/1177932218821371, PMID 30670919.

Lansdon EB, Brendza KM, Hung M, Wang R, Mukund S, Jin D. Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J Med Chem. 2010 May 27;53(10):4295-9. doi: 10.1021/jm1002233, PMID 20438081.

Crisan L, Bora A. Small molecules of natural origin as potential anti-HIV agents: a computational approach. Life (Basel). 2021 Jul 20;11(7):722. doi: 10.3390/life11070722, PMID 34357094.

Azijn H, Tirry I, Vingerhoets J, de Béthune MP, Kraus G, Boven K. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother. 2010 Feb;54(2):718-27. doi: 10.1128/AAC.00986-09, PMID 19933797.

Spach D. Antiretroviral medications and initial therapy-core concepts; 2023.

Silprasit K, Seetaha S, Pongsanarakul P, Hannongbua S, Choowongkomon K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J Med Plants Res. 2011;5(19):4899-906.

Mardisiswoyo S, Mangunsudarso HR, Nenek Moyang C Puyang W. Jakarta: balai pustaka. Indonesian; 1985.

Guan M, Guo L, Ma H, Wu H, Fan X. Network pharmacology and molecular docking suggest the mechanism for the biological activity of rosmarinic acid. Evid Based Complement Alternat Med. 2021 Apr 11;2021:5190808. doi: 10.1155/2021/5190808, PMID 33936238.

Noe MC, Peakman MC. Drug discovery technologies: current and future trends. Comprehensive medicinal chemistry III. Elsevier; 2017. p. 1-32.

Tijjani H, Olatunde A, Adegunloye AP, Ishola AA. In silico insight into the interaction of 4-aminoquinolines with selected SARS-CoV-2 structural and nonstructural proteins. Coronavirus drug discovery. Elsevier; 2022. p. 313-33.

Bauman JD, Patel D, Dharia C, Fromer MW, Ahmed S, Frenkel Y. Detecting allosteric sites of HIV-1 reverse transcriptase by X-ray crystallographic fragment screening. J Med Chem. 2013 Apr 11;56(7):2738-46. doi: 10.1021/jm301271j, PMID 23342998.

Neidle S. Design principles for quadruplex-binding small molecules. Therapeutic applications of quadruplex nucleic acids. Elsevier; 2012. p. 151-74.

Hou T, Wang J, Li Y. ADME evaluation in drug discovery. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model. 2007 Nov 1;47(6):2408-15. doi: 10.1021/ci7002076, PMID 17929911.

Radchenko EV, Dyabina AS, Palyulin VA, Zefirov NS. Prediction of human intestinal absorption of drug compounds. Russ Chem Bull. 2016 Feb 8;65(2):576-80. doi: 10.1007/s11172-016-1340-0.

Zhai J, Man VH, Ji B, Cai L, Wang J. Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism. Drug Discov Today. 2023 Oct;28(10):103728. doi: 10.1016/j.drudis.2023.103728, PMID 37517604.

Muruganantham S. In silico molecular docking analysis of anti HIV-1 RT from Indian medicinal plant Hybanthus enneaspermus. J Nat Sci Math. 2021.

Wang M, Firrman J, Liu LS, Yam K. A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res Int. 2019;2019:7010467. doi: 10.1155/2019/7010467, PMID 31737673.

Sanna C, Marengo A, Acquadro S, Caredda A, Lai R, Corona A. In vitro anti-HIV-1 reverse transcriptase and integrase properties of Punica granatum L. leaves, bark, and peel extracts and their main compounds. Plants (Basel). 2021 Oct 1;10(10). doi: 10.3390/plants10102124, PMID 34685933.

Ko Y. Flavonoids as potential inhibitors of retroviral enzymes. J Korean Soc Appl Biol Chem. 2009;52(4):321-6. doi: 10.3839/jksabc.2009.057.

Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal Gandara J, Cao H. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr. 2023;63(16):2773-89. doi: 10.1080/10408398.2021.1980762, PMID 34554029.

Behbahani M, Sayedipour S, Pourazar A, Shanehsazzadeh M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res Pharm Sci. 2014;9(6):463-9. PMID 26339261.

Brentnall M, Rodriguez Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013 Jul 9;14(1):32. doi: 10.1186/1471-2121-14-32, PMID 23834359.

Chung. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax-and Bcl-2-triggered mitochondrial pathway. Int J Oncol. 2010;36(6). doi: 10.3892/ijo_00000634.

Jabea Ekabe C, Asaba Clinton N, Agyei EK, Kehbila J. Role of apoptosis in HIV pathogenesis. Adv Virol. 2022;2022:8148119. doi: 10.1155/2022/8148119, PMID 35462964.

Luetragoon T, Pankla Sranujit RP, Noysang C, Thongsri Y, Potup P, Suphrom N. Anti-cancer effect of 3-hydroxy-β-ionone identified from Moringa oleifera lam. leaf on human squamous cell carcinoma 15 cell line. Molecules. 2020 Aug 1;25(16). doi: 10.3390/molecules25163563, PMID 32764438.

Published

07-03-2024

How to Cite

FITRIANA, M., MUN’IM, A., FIRDAYANI, & ADIKUSUMA, W. (2024). EXPLORATION OF THE ACTIVE COMPOUNDS OF MORINGA OLEIFERA LAM AS HIV-1 REVERSE TRANSCRIPTASE INHIBITOR: A NETWORK PHARMACOLOGY AND MOLECULAR DOCKING APPROACH. International Journal of Applied Pharmaceutics, 16(2), 237–246. https://doi.org/10.22159/ijap.2024v16i2.49855

Issue

Section

Original Article(s)