IN SILICO EXPLORATION OF BERBERINE AS A POTENTIAL WOUND HEALING AGENT VIA NETWORK PHARMACOLOGY, MOLECULAR DOCKING, AND MOLECULAR DYNAMICS SIMULATION

Authors

  • RAHUL SACHDEO Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad-415539, Maharashtra, India https://orcid.org/0009-0008-6805-7835
  • CHITRA KHANWELKAR Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad-415539, Maharashtra, India https://orcid.org/0000-0001-5037-7859
  • AMOL SHETE Department of Pharmceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad-415539, Maharashtra, India https://orcid.org/0000-0003-0350-432X

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49922

Keywords:

Molecular docking, Network pharmacology, Gene ontology, Berberine, Wound healing

Abstract

Objective: Wound healing remains a complex biological process crucial for tissue repair and homeostasis. Our goal in this paper is to focus on the application of advanced computational techniques to explore the potential of naturally occurring compound berberine in addressing molecular targets related to wound healing.

Methods: Network pharmacology, molecular docking analysis, in silico ADMET prediction, and extensive 100 ns molecular dynamics simulations was performed to gain a holistic understanding of the therapeutic potential of berberine against molecular targets involved in wound healing. This study predicted drug-likeness scores, potential side effects, ADMET profiles, carcinogenicity, MolLogP, molecular volume analysis, and molecular polar surface area for berberine.

Results: Findings of the study revealed that berberine displayed a remarkable binding affinity for the epidermal growth factor receptor (EGFR), with a binding energy of-8.14 kcal/mol, surpassing the crystal ligand's binding energy of-7.15 kcal/mol. This indicates a strong potential for berberine in modulating EGFR-related pathways critical for wound healing. The culmination of the investigation was a 100 ns molecular dynamics simulation, which demonstrated consistent binding and stability over time, reinforcing the potential of berberine as a wound healing agent.

Conclusion: The integration of gene expression analysis, enrichment studies, network analysis, molecular docking, and molecular dynamics simulations unveiled crucial mechanisms underlying efficacy of berberine as a potent wound-healing agent.

Downloads

Download data is not yet available.

References

Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle). 2019;8(2):39-48. doi: 10.1089/wound.2019.0946, PMID 30809421.

Patel P. A bird’s eye view on a therapeutically ’wonder molecule’: berberine. Phytomed Plus. 2021;1(3):100070. doi: 10.1016/j.phyplu.2021.100070.

Kaginelli SB, Basalingappa KM. Berberıne and its pharmacology potentıal: a revıew. Eur J Biomed Pharm Sci. 2020;7:115-23.

Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. Nature. 2023;616(7958):673-85. doi: 10.1038/s41586-023-05905-z, PMID 37100941.

Bhowmik R, Nath R, Sharma S, Roy R, Biswas R. High-throughput screening and dynamic studies of selected compounds against sars-cov-2. Int J App Pharm. 2022;14:251-60. doi: 10.22159/ijap.2022v14i1.43105.

Mahalekshmi V, Balakrishnan N, Ajay Kumar TV, Parthasarathy V. In silico molecular screening and docking approaches on antineoplastic agent-irinotecan towards the marker proteins of colon cancer. Int J App Pharm. 2023;15:84-92. doi: 10.22159/ijap.2023v15i5.48523.

Rathod S, Shinde K, Porlekar J, Choudhari P, Dhavale R, Mahuli D. Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: an in silico molecular docking and dynamic approach. ACS Omega. 2023;8(1):391-409. doi: 10.1021/acsomega.2c04837, PMID 36643495.

Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. Acta Pharmacol Sin. 2012;33(9):1131-40. doi: 10.1038/aps.2012.109, PMID 22922346.

Musfiroh I, Sigalingging OS, Suhandi C, Khairul Ikram NKK, Megantara S, Muchtaridi M. In silico study of some flavonoid compounds against ace-2 receptors as anti-COVID-19. Int J App Pharm. 2023;15:225-30. doi: 10.22159/ijap.2023v15i4.48109.

Raju M, Kulkarni YA, Wairkar S. Therapeutic potential and recent delivery systems of berberine: a wonder molecule. J Funct Foods. 2019;61. doi: 10.1016/j.jff.2019.103517.

Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs. 2010;19(10):1297-307. doi: 10.1517/13543784.2010.517745, PMID 20836620.

Mahmoudi M, Gould L. Opportunities and challenges of the management of chronic wounds: a multidisciplinary viewpoint. Chronic Wound Care Manag Res. 2020;7:27-36. doi: 10.2147/CWCMR.S260136.

Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A review of fibraurea tinctoria and its component, berberine, as an antidiabetic and antioxidant. Molecules. 2023;28(3). doi: 10.3390/molecules28031294, PMID 36770960.

Serena TE. A global perspective on wound care. Adv Wound Care (New Rochelle). 2014;3(8):548-52. doi: 10.1089/wound.2013.0460, PMID 25126476.

Shah A, Amini-Nik S. The role of phytochemicals in the inflammatory phase of wound healing. Int J Mol Sci. 2017;18(5). doi: 10.3390/ijms18051068, PMID 28509885.

Morsy MA, Abdel-Latif RG, Nair AB, Venugopala KN, Ahmed AF, Elsewedy HS. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. Pharmaceutics. 2019;11(11). doi: 10.3390/pharmaceutics11110609, PMID 31766305.

Singh Pawar R, Toppo A. Plants that heal wounds. A review. Herba Pol. 2012;58.

Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle). 2019;8(2):39-48. doi: 10.1089/wound.2019.0946, PMID 30809421.

Walton EW. Topical phytochemicals: applications for wound healing. Adv Skin Wound Care. 2014;27(7):328-33. doi: 10.1097/01.ASW.0000450101.97743.0f, PMID 24932954.

Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-29. doi: 10.1177/0022034509359125, PMID 20139336.

Reshad RAI, Alam S, Raihan HB, Meem KN, Rahman F, Zahid F. In silico investigations on curcuminoids from Curcuma longa as positive regulators of the Wnt/β-catenin signaling pathway in wound healing. Egypt J Med Hum Genet. 2021;22(1). doi: 10.1186/s43042-021-00182-9.

Rathod S, Dey S, Pawar S, Dhavale R, Choudhari P, Rajakumara E. Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study. J Biomol Struct Dyn. 2023:1-19. doi: 10.1080/07391102.2023.2225099.

Galfale S, Zainab R, Kumar AP, Nithya M, Susha S, Sharma S. Molecular docking and dynamic simulation-based screening identifies inhibitors of targeted sars-cov-23clpro and human ace2. International Journal of Applied Pharmaceutics 2023;15:297–308. https://doi.org/10.22159/ijap.2023v15i6.48782.

Noor F, Tahir Ul, Qamar MTU, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals (Basel). 2022;15(5). doi: 10.3390/ph15050572, PMID 35631398.

Li L, Yang L, Yang L, He C, He Y, Chen L. Network pharmacology: a bright guiding light on the way to explore the personalized, precise medication of traditional Chinese medicine. Chin Med. 2023;18(1):146. doi: 10.1186/s13020-023-00853-2, PMID 37941061.

Challapa Mamani MR, Tomas Alvarado E, Espinoza Baigorria A, Leon Figueroa DA, Sah R, Rodriguez Morales AJ. Molecular docking and molecular dynamics simulations in related to leishmania donovani: an update and literature review. Trop Med Infect Dis. 2023;8(10). doi: 10.3390/tropicalmed8100457, PMID 37888585.

Pantsar T, Poso A. Binding affinity via docking: fact and fiction. Molecules. 2018;23(8). doi: 10.3390/MOLECULES23081899, PMID 30061498.

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.

Adcock SA, McCammon JA. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev. 2006;106(5):1589-615. doi: 10.1021/cr040426m, PMID 16683746.

Schneider R, Sharma AR, Rai A. Introduction to molecular dynamics. In: Fehske H, Schneider R, Weiße A, editors. Computational many-particle physics. Lecture notes in physics. Vol. 739. Berlin, Heidelberg: Springer; 2008. p. 3-40. doi: 10.1007/978-3-540-74686-7_1.

Karplus M, Petsko GA. Molecular dynamics simulations in biology. Nature. 1990;347(6294):631-9. doi: 10.1038/347631a0, PMID 2215695.

Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem. 2015;91:4-14. doi: 10.1016/j.ejmech.2014.08.004, PMID 25108504.

Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9:71. doi: 10.1186/1741-7007-9-71, PMID 22035460.

Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129-43. doi: 10.1016/j.neuron.2018.08.011, PMID 30236283.

Hildebrand PW, Rose AS, Tiemann JKS. Bringing molecular dynamics simulation data into view. Trends Biochem Sci. 2019;44(11):902-13. doi: 10.1016/j.tibs.2019.06.004, PMID 31301982.

Shukla R, Tripathi T. Molecular dynamics simulation of protein andprotein–ligand complexes. Computer-Aided Drug Design. 2020. p. 133-61. doi: 10.1007/978-981-15-6815-2_7/COVER.

Sinha S, Tam B, Wang SM. Applications of molecular dynamics simulation in protein study. Membranes (Basel). 2022;12(9). doi: 10.3390/membranes12090844, PMID 36135863.

Justino GC, Nascimento CP, Justino MC. Molecular dynamics simulations and analysis for bioinformatics undergraduate students. Biochem Mol Biol Educ. 2021;49(4):570-82. doi: 10.1002/bmb.21512, PMID 33844418.

Jayasurya BR, Swathy JS, Susha D, Sharma S. Molecular docking and investigation of Boswellia serrata phytocompounds as cancer therapeutics to target growth factor receptors: an in silico approach. Int J App Pharm. 2023;15:173-83. doi: 10.22159/ijap.2023v15i4.47833.

Dey S, Rathod S, Gumphalwad K, Yadav N, Choudhari P, Rajakumara E. Exploring α, β-unsaturated carbonyl compounds against bacterial efflux pumps via computational approach. J Biomol Struct Dyn. 2023:1-14. doi: 10.1080/07391102.2023.2246568.

Bagal VK, Rathod SS, Mulla MM, Pawar SC, Choudhari PB, Pawar VT. Exploration of bioactive molecules from Tinospora cordifolia and Actinidia deliciosa as an immunity modulator via molecular docking and molecular dynamics simulation study. Nat Prod Res. 2023;37(23):4053-7. doi: 10.1080/14786419.2023.2165076, PMID 36622893.

Swami P, Rathod S, Choudhari P, Patil D, Patravale A, Nalwar Y. Fe3O4@SiO2@TDI@DES: a novel magnetically separable catalyst for the synthesis of oxindoles. J Mol Struct. 2023;1292:136079. doi: 10.1016/j.molstruc.2023.136079.

Rathod S, Bhande D, Pawar S, Gumphalwad K, Choudhari P, More H. Identification of potential hits against fungal lysine deacetylase rpd3 via molecular docking, molecular dynamics simulation, DFT, in-silico ADMET and drug-likeness assessment. Chemistry Africa. doi: 10.1007/s42250-023-00766-5.

Choudhari S, Patil SK, Rathod S. Identification of hits as anti-obesity agents against human pancreatic lipase via docking, drug-likeness, in-silico ADME(T), pharmacophore, DFT, molecular dynamics, and MM/PB(GB)SA analysis. J Biomol Struct Dyn. 2023:1-23. doi: 10.1080/07391102.2023.2258407.

Rochlani S, Bhatia M, Rathod S, Choudhari P, Dhavale R. Exploration of limonoids for their broad spectrum antiviral potential via DFT, molecular docking and molecular dynamics simulation approach. Nat Prod Res. 2023:1-6. doi: 10.1080/14786419.2023.2202398.

Rathod S, Chavan P, Mahuli D, Rochlani S, Shinde S, Pawar S. Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. J Mol Model. 2023;29(4):113. doi: 10.1007/S00894-023-05521-8, PMID 36971900.

Huang Z, Liu X. Network pharmacology and molecular docking analysis on targets and mechanisms of berberine in atypical antipsychotic-induced metabolic syndrome. Nat Prod Commun. 2022;17(10). doi: 10.1177/1934578X221129106.

Zhou R, Xiang C, Cao G, Xu H, Zhang Y, Yang H. Berberine accelerated wound healing by restoring TrxR1/JNK in diabetes. Clin Sci (Lond). 2021;135(4):613-27. doi: 10.1042/CS20201145, PMID 33491733.

Zhang P, He L, Zhang J, Mei X, Zhang Y, Tian H. Preparation of novel berberine nano-colloids for improving wound healing of diabetic rats by acting Sirt1/NF-κB pathway. Colloids Surf B Biointerfaces. 2020;187:110647. doi: 10.1016/j.colsurfb.2019.110647, PMID 31761520.

Published

07-03-2024

How to Cite

SACHDEO, R., KHANWELKAR, C., & SHETE, A. (2024). IN SILICO EXPLORATION OF BERBERINE AS A POTENTIAL WOUND HEALING AGENT VIA NETWORK PHARMACOLOGY, MOLECULAR DOCKING, AND MOLECULAR DYNAMICS SIMULATION. International Journal of Applied Pharmaceutics, 16(2), 188–194. https://doi.org/10.22159/ijap.2024v16i2.49922

Issue

Section

Original Article(s)