THE APPLICATION OF BIOANALYTICAL METHOD OF TAMOXIFEN AND ITS ACTIVE METABOLITES FOR THERAPEUTIC DRUG MONITORING IN BREAST CANCER PATIENTS: A REVIEW

Authors

  • MUHAMMAD IKHSAN Faculty of Military Pharmacy, Republic of Indonesia Defense University, Bogor, West Java, Indonesia https://orcid.org/0000-0003-1995-6566
  • YAHDIANA HARAHAP Faculty of Military Pharmacy, Republic of Indonesia Defense University, Bogor, West Java, Indonesia. Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia https://orcid.org/0000-0002-7217-7900

DOI:

https://doi.org/10.22159/ijap.2024v16i3.49957

Keywords:

Bioanalytical method, Breast cancer, Endoxifen, Tamoxifen, Therapeutic drug monitoring

Abstract

Breast cancer is the most common cancer around the world and in Indonesia. The most widely used agent for breast cancer treatment is tamoxifen, with a fixed dose of 20 mg per day. Tamoxifen is metabolized by cytochrome P450 3A4 (CYP3A4) and 2D6 (CYP2D6) to endoxifen and 4-hydroxytamoxifen, which have 30- to 100-fold more potent antiestrogenic activity than tamoxifen. High variations of CYP3A4 and CYP2D6 genes can lead to interpatient variability in its metabolites concentration. The dose can be increased to 40 or 60 mg per day based on individual needs. Therapeutic drug monitoring (TDM) is required to measure the concentration of tamoxifen and its metabolites to decide the individualized dose. The measurement of drug levels should use a sensitive, selective, accurate, precise, and reliable bioanalytical method. Various bioanalytical methods have been developed in several matrices: urine, scalp hair, serum, plasma, dried blood spot (DBS), and volumetric absorptive microsampling (VAMS) samples, with different sample preparations, and frequently using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The bioanalytical method of tamoxifen and its metabolites in the DBS sample was more suitable in the TDM application due to the low invasive sampling technique, more stable sample, and rapid sample preparation. Therefore, it is more time- and cost-efficient than the other methods.

Downloads

Download data is not yet available.

References

The Global Cancer Observatory [Internet]. Indonesia cancer fact sheet; c2020 [cited 2023 Nov 10]. Available from: https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-fact-sheets.pdf

The Global Cancer Observatory [Internet]. World cancer fact sheet; c2020 [cited 2023 Nov 10]. Available from: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf

Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci. 2020;151:105401. doi: 10.1016/j.ejps.2020.105401, PMID 32504806.

McDonald ES, Clark AS, Tchou J, Zhang P, Freedman GM. Clinical diagnosis and management of breast cancer. J Nucl Med. 2016;57:9S-16S, PMID 26834110.

Fang X, Cao J, Shen A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol. 2020;57:101662. doi: 10.1016/j.jddst.2020.101662.

Jager NGL, Linn SC, Schellens JHM, Beijnen JH. Tailored tamoxifen treatment for breast cancer patients: a perspective. Clin Breast Cancer. 2015;15(4):241–244. doi: 10.1016/j.clbc.2015.04.005, PMID 25997856.

Sanchez-Spitman AB, Swen JJ, Dezentje VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol. 2019;12(6):523–536. doi: 10.1080/17512433.2019.1610390, PMID 31008668.

Bobin-Dubigeon C, Campone M, Rossignol E, Salaun E, Amiand MB, Bard JM. New UPLC-MS/MS assay for the determination of tamoxifen and its metabolites in human plasma, application to patients. Futur Sci OA. 2019;5(5), PMID 31245038.

Groenland SL, Mathijssen RHJ, Beijnen JH, Huitema ADR, Steeghs N. Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine. Eur J Clin Pharmacol. 2019;75(9):1309–18. doi: 10.1007/s00228-019-02704-2, PMID 31175385.

Maggadani BP, Harahap Y, Harmita, Haryono SJ, Sitorus TRJ. Simple and rapid method for the simultaneous analysis of tamoxifen, endoxifen, and 4-hydroxytamoxifen in dried blood spot using liquid chromatography–tandem mass spectrometry. Int J Appl Pharm. 2020;12(3):112–120.

Tré-Hardy M, Capron A, Antunes MV, Linden R, Wallemacq P. Fast method for simultaneous quantification of tamoxifen and metabolites in dried blood spots using an entry level LC–MS/MS system. Clin Biochem. 2016;49(16–17):1295–1298. doi: 10.1016/j.clinbiochem.2016.07.018, PMID 27498307.

Harahap Y, Manggadani BP, Sitorus TRJ, Mulyadi CA, Purwanto DJ. Clinical application of dried blood spot for monitoring studies of tamoxifen, endoxifen, and 4-hydroxytamoxifen in breast cancer patient using liquid chromatography–tandem mass spectrometry. Int J Appl Pharm. 2019;11(2):59–63.

Martinez de Dueñas E, Ochoa Aranda E, Blancas Lopez-Barajas I, Ferrer Magdalena T, Bandrés Moya F, Chicharro García LM, et al. Adjusting the dose of tamoxifen in patients with early breast cancer and CYP2D6 poor metabolizer phenotype. Breast. 2014;23(4):400–406. doi: 10.1016/j.breast.2014.02.008, PMID 24685597.

Jager NGL, Rosing H, Linn SC, Schellens JHM, Beijnen JH. Importance of highly selective LC-MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen. Breast Cancer Res Treat. 2012;133(2):793–798, PMID 22388692.

Teunissen SF, Rosing H, Seoane MD, Brunsveld L, Schellens JHM, Schinkel AH, et al. Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques. J Pharm Biomed Anal. 2011;55(3):518–526. doi: 10.1016/j.jpba.2011.02.009, PMID 21392921.

Arellano C, Allal B, Goubaa A, Roché H, Chatelut E. An UPLC-MS/MS method for separation and accurate quantification of tamoxifen and its metabolites isomers. J Pharm Biomed Anal. 2014;100:254–261. doi: 10.1016/j.jpba.2014.07.033, PMID 25173109.

Antunes MV, Rosa DD, Viana T dos S, Andreolla H, Fontanive TO, Linden R. Sensitive HPLC-PDA determination of tamoxifen and its metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in human plasma. J Pharm Biomed Anal. 2013;76:13–20. doi: 10.1016/j.jpba.2012.12.005, PMID 23291438.

Antunes MV, Raymundo S, De Oliveira V, Staudt DE, Gössling G, Peteffi GP, et al. Ultra-high performance liquid chromatography tandem mass spectrometric method for the determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots - development, validation and clinical application during breast. Talanta. 2015;132:775–784, PMID 25476377.

Rathi A, Jain DS, Beotra DA, Trivedi DM, Nimker V, Kumar DR. Urine excretion study of tamoxifen metabolite, 3-hydroxy-4-methoxy tamoxifen by GC-MS. J Drug Deliv Ther. 2016;6(1):19-24. doi: 10.22270/jddt.v6i1.1194.

Teunissen SF, Jager NGL, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH. Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(19):1677–1685. doi: 10.1016/j.jchromb.2011.04.011, PMID 21543272.

Pistilli B, Paci A, Ferreira AR, Di Meglio A, Poinsignon V, Bardet A, et al. Serum detection of nonadherence to adjuvant tamoxifen and breast cancer recurrence risk. J Clin Oncol. 2020;38(24):2762–2772. doi: 10.1200/JCO.19.01758, PMID: 32568632.

Jager NGL [Internet]. Bioanalysis and clinical pharmacology of tamoxifen in breast cancer; c2014 [cited 2023 Nov 10]. Available from: https://dspace.library.uu.nl/handle/1874/297733.

Drooger JC, Jager A, Lam MH, den Boer MD, Sleijfer S, Mathijssen RHJ, et al. Development and validation of an UPLC-MS/MS method for the quantification of tamoxifen and its main metabolites in human scalp hair. J Pharm Biomed Anal. 2015;114:416–425. doi: 10.1016/j.jpba.2015.06.018, PMID 26119504.

Ximenez JPB, De Andrade JM, Marques MP, Coelho EB, Suarez-Kurtz G, Lanchote VL. Hormonal status affects plasma exposure of tamoxifen and its main metabolites in tamoxifen-treated breast cancer patients. BMC Pharmacol Toxicol. 2019;20(Suppl 1):81. doi: 10.1186/s40360-019-0358-y, PMID 31852530.

Maggadani BP, Harahap Y, Harmita, Haryono SJ, Untu CWP. Analysis of tamoxifen and its metabolites in dried blood spot and volumetric absorptive microsampling: comparison and clinical application. Heliyon. 2021;7(6):e07275. doi: 10.1016/j.heliyon.2021.e07275, PMID 34179536.

Hanf V, Hanf D. Reproduction and breast cancer risk. Breast Care. 2014;9(6):398–405. doi: 10.1159/000369570, PMID 25759622

Wielsøe M, Gudmundsdottir S, Bonefeld-Jørgensen EC. Reproductive history and dietary habits and breast cancer risk in Greenlandic Inuit: a case control study. Public Health. 2016;137:50–58. doi: 10.1016/j.puhe.2016.06.016, PMID 27450442.

Shah R, Rosso K, David Nathanson S. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283–298. doi: 10.5306/wjco.v5.i3.283, PMID 25114845.

Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. doi: 10.1016/j.gendis.2018.05.001, PMID 30258937.

Mehdi S, Chauhan A, Dhutty A. Cancer and new prospective to treat cancer. Int J Curr Pharm Res. 2023;15(6). doi: 10.22159/ijcpr.2023v15i6.3078.

Mansouri S, Farahmand L, Hosseinzade A, Eslami-S Z, Majidzadeh-A K. Estrogen can restore tamoxifen sensitivity in breast cancer cells amidst the complex network of resistance. Biomed Pharmacother. 2017;93:1320–5. doi: 10.1016/j.biopha.2017.07.057, PMID 28747013.

Jayashree V, Priyanka S, Reshma A. A review on screening methods of breast cancer, cancer biomarkers and phytoconstituents against breast cancer. Asian J Pharm Clin Res. 2017;10(12):17–21. doi: 10.22159/ajpcr.2017.v10i12.21039.

Suganya J, Radha M, Naorem DL, Nishandhini M. In silico docking studies of selected flavonoids - natural healing agents against breast cancer. Asian Pacific J Cancer Prev. 2014;15(19):8155–8159. doi: 10.7314/apjcp.2014.15.19.8155, PMID 25338999.

Goetz MP, Sangkuhl K, Guchelaar H, Schwab M, Whirl-carrillo M, Symmans WF, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther. 2018;103(5):770–777. doi: 10.1002/cpt.1007, PMID 29385237.

Clifford RE, Bowden D, Blower E, Kirwan CC, Vimalachandran D. Does tamoxifen have a therapeutic role outside of breast cancer? A systematic review of the evidence. Surg Oncol. 2020;33:100–107. doi: 10.1016/j.suronc.2020.02.006, PMID 32561074.

K S. Tamoxifen: pharmacokinetics and pharmacodynamics. Open Access J Pharm Res. 2017;1(8).

Wigle TJ, Jansen LE, Teft WA, Kim RB. Pharmacogenomics guided-personalization of warfarin and tamoxifen. J Pers Med. 2017;7(4):20. doi: 10.3390/jpm7040020, PMID 29236081.

Lee CI, Low SK, Maldonado R, Fox P, Balakrishnar B, Coulter S, et al. Simplified phenotyping of CYP2D6 for tamoxifen treatment using the N-desmethyl-tamoxifen/ endoxifen ratio. Breast. 2020;54:229–234. doi: 10.1016/j.breast.2020.10.008, PMID 33161337.

Binkhorst L, Mathijssen RHJ, Jager A, van Gelder T. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev [Internet]. 2015;41(3):289–299. doi: 10.1016/j.ctrv.2015.01.002, PMID 25618289.

Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol. 2008;19(1):56–61. doi: 10.1093/annonc/mdm434, PMID 17947222.

Mao X, Cheung YK. Sequential designs for individualized dosing in phase I cancer clinical trials. Contemp Clin Trials. 2017;63:51–58. doi: 10.1016/j.cct.2016.08.018, PMID 27592121.

Hertz DL, Rae JM. Individualized tamoxifen dose escalation: confirmation of feasibility, question of utility. Clin Cancer Res. 2016;22(13):3121–3123. doi: 10.1158/1078-0432.CCR-16-0370, PMID 27012810.

Avataneo V, D’Avolio A, Cusato J, Cantù M, De Nicolò A. LC-MS application for therapeutic drug monitoring in alternative matrices. J Pharm Biomed Anal. 2019;166:40–51. doi: 10.1016/j.jpba.2018.12.040, PMID 30609393.

Iyer RK, Athreya AP, Wang L, Weinshilboum RM. Artificial intelligence and pharmacogenomics. Adv Mol Pathol. 2019;2(1):111–8. doi: 10.1016/j.yamp.2019.08.003.

Londhe V, Rajadhyaksha M. Opportunities and obstacles for microsampling techniques in bioanalysis: special focus on DBS and VAMS. J Pharm Biomed Anal. 2020;182:113102. doi: 10.1016/j.jpba.2020.113102, PMID 32014628.

Paniagua-González L, Lendoiro E, Otero-Antón E, López-Rivadulla M, de-Castro-Ríos A, Cruz A. Comparison of conventional dried blood spots and volumetric absorptive microsampling for tacrolimus and mycophenolic acid determination. J Pharm Biomed Anal. 2022;208:114443. doi: 10.1016/j.jpba.2021.114443, PMID 34735994.

Published

03-04-2024

How to Cite

IKHSAN, M., & HARAHAP, Y. (2024). THE APPLICATION OF BIOANALYTICAL METHOD OF TAMOXIFEN AND ITS ACTIVE METABOLITES FOR THERAPEUTIC DRUG MONITORING IN BREAST CANCER PATIENTS: A REVIEW. International Journal of Applied Pharmaceutics, 16(3). https://doi.org/10.22159/ijap.2024v16i3.49957

Issue

Section

Review Article(s)

Most read articles by the same author(s)

1 2 3 > >>