REDUCTION OF TIME AND COST IN PREPARATION OF NANOFIBERS FROM PVA, PEO AND HPMC USING DESIGN-EXPERT® SOFTWARE

Authors

  • LAYTH J. ABDULREDHA SHAWKA AL-ASADI Babil Health Directorate, Babil General Hospital, Babil, Hilla, Iraq https://orcid.org/0009-0000-1694-6325
  • SARMAD AL-EDRESI Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Kufa, Najaf-52001, Iraq https://orcid.org/0000-0002-9235-2948

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50022

Keywords:

Nanotechnology, Electrospinning technique, Nanofibres, Design-Expert® software

Abstract

Objective: The following research aims to formulate nanofibers using a statistical model to reduce time and cost. Nanofibers are nanomaterials composed of a blend of more than one polymer. The selection of the proper exact ratio is challenging, costly and time-consuming.

Methods: Nanofibres were prepared from polyvinyl alcohol (PVA), polyethylene oxide (PEO), and hydroxyl propyl methyl cellulose (HPMC) at different concentrations. The experiment used Design-Expert® software (version 13) through full factorial design. A high electrical field was applied to convert the polymeric solution to electrospun nanofibers. Voriconazole, as a triazole drug, was used as a model drug. The entrapment efficiency (EE%) of Voriconazole, fibre diameters and the morphology of nanofibers were analysed using scanning electron microscopy (SEM). The higher desirability of nanofibers was selected.

Results: The EE% ranged from 6.7 % to 97.94 %. Fibres diameter ranged from 87.18 to 2500 nm. An SEM analysis revealed long and uniform threads of nanofibers. The solution suggested by the software out of 18 runs resulted in nanofibers having an EE% of 90.3% and a diameter of 87.8 nm±22. 2 SD.

Conclusion: Electrospun nanofibres were successfully prepared from 18 runs only. A high loading of model drug was achieved at relatively low numbers of experiments. Time and cost were effectively reduced while maintaining a high desirability for the results.

Downloads

Download data is not yet available.

References

Salal AY, Abbas HK, Abdul Razzaq IF. Quality control and testing evaluation of various metoprolol tartrate (50 mg) tablets available in iraq market. J Med Chem Sci. 2023;6(3):606-12. doi: 10.26655/jmchemsci.2023.3.17.

Behera SK, Meena H, Chakraborty S, Meikap BC. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol. 2018;28(4):621-9. doi: 10.1016/j.ijmst.2018.04.014.

Aledresi SS, Alshaibani AJ, Abood AN. Enhancing the loading capacity of kojic acid dipalmitate in liposomes. Lat Am J Pharm. 2020;39(7):1-7.

Al-Hamadani MH, Al-Edresi S. Formulation and characterization of hydrogel of proniosomes loaded diclofenac sodium. Int J Drug Deliv Technol. 2022;12(1):132-6. doi: 10.25258/ijddt.12.1.24.

Korycka P, Mirek A, Kramek Romanowska K, Grzeczkowicz M, lewińska D. Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design. Beilstein J Nanotechnol. 2018;9(1):2466-78. doi: 10.3762/bjnano.9.231, PMID 30345211.

Verma D, Thakur PS, Padhi S, Khuroo T, Talegaonkar S, Iqbal Z. Design expert assisted nanoformulation design for co-delivery of topotecan and thymoquinone: optimization, in vitro characterization and stability assessment. J Mol Liq. 2017;242:382-94. doi: 10.1016/j.molliq.2017.07.002.

Abdulrazzaq IF, Salal YA, Abdul Hasan MT, Abbas HK, Hasan Al-Gburi KM. A comparative study of quality control testing of mefenamic acid tablets in Iraq. Int J App Pharm. 2022;14(6):127-30. doi: 10.22159/ijap.2022v14i6.46251.

Chan S, Jankovic J, Susac D, Saha MS, Tam M, Yang H. Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J Power Sources. 2018;392:239-50. doi: 10.1016/j.jpowsour.2018.02.001.

Aledresi SS, Abdulrazza IF, Alshaibani AJ. Enhancing the solubility of nimesulide by loading to a nanoemulsion. Lat Am J Pharm. 2020;39(11):2299-308.

Giongo JL, Vaucher RD, Ourique AF, Steffler MC, Frizzo CP, Hennemman B. Development of nanoemulsion containing pelargonium graveolens oil: characterization and stability study. Int J Pharm Pharm Sci. 2016;8(12):271-6. doi: 10.22159/ijpps.2016v8i12.15108.

Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019;25(1):1-15. doi: 10.3390/molecules25010112, PMID 31892180, PMCID PMC6982820.

Wannas AN, Abdul Hasan MT, Mohammed Jawad KK, Razzaq IF. Preparation and in vitro evaluation of Self-Nano emulsifying drug delivery systems of ketoprofen. Int J App Pharm. 2023;15(3):71-9. doi: 10.22159/ijap.2023v15i3.46892.

Wen MM, Farid RM, Kassem AA. Nano-proniosomes enhancing the transdermal delivery of mefenamic acid. J Liposome Res. 2014;24(4):280-9. doi: 10.3109/08982104.2014.911313, PMID 24779560.

Sarvan VH, Vashisth H. Types and application of pharmaceutical nanotechnology: a review. Int J Curr Pharm Sci. 2023;15(3):14-8. doi: 10.22159/ijcpr.2023v15i3.3010.

Flayeh AA, Kadhim HJ. Effect of natural dye on the properties of electrospun multiwall carbon nanotubes/polystyrene nanocomposites nanofibers. J Vis Exp. 2021;9(3):1154-64.

Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, liu B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials (Basel). 2020;11(1):1-23. doi: 10.3390/nano11010021, PMID 33374248.

Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298-415. doi: 10.1021/acs.chemrev.8b00593, PMID 30916938.

Madapally VD, MP. Fabrication of nanofibres by electrospinning using keratin from waste chicken feathers, pva and agnps. Int J Pharm Pharm Sci. 2019;11(8):78-84. doi: 10.22159/ijpps.2019v11i8.33637.

Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules. 2019;24(5):1-33. doi: 10.3390/molecules24050834, PMID 30813599.

Augustine R, Rehman SR, Ahmed R, Zahid AA, Sharifi M, Falahati M. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol. 2020;156:153-70. doi: 10.1016/j.ijbiomac.2020.03.207, PMID 32229203.

Adeli H, Khorasani MT, Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol. 2019;122:238-54. doi: 10.1016/j.ijbiomac.2018.10.115, PMID 30342125.

Wilk S, Benko A. Advances in fabricating the electrospun biopolymer-based biomaterials. J Funct Biomater. 2021;12(2):1-32. doi: 10.3390/jfb12020026, PMID 33923664.

Lekshmi NC, SV, Kumari RS, Bharath MS, SJ, JR. Synthesis of nanofibre and silver nanoparticles from coelomic fluid of earthworm, eudrilus eugeniae and pontoscolex corethrurus and its antimicrobial potency. Asian J Pharm Clin Res. 2014;7(1):177-82.

Zhang Z, Kong l, Lv M, Yao Y, Gao l, Zhou R, Ma W, li J. PVA enema ameliorates DSS-induced acute colitis in mice. BMC Gastroenterology. 2023;23(1):1-12. doi: 10.1186/s12876-023-03005-w, PMID: 37904100.

Huang R, Tao Z, Wu L, Shen J, Xu W. Investigation of workability and mechanical properties of PVA fiber-reinforced phosphogypsum-based composite materials. Materials (Basel, Switzerland). 2023;16(12):1-19. doi: 10.3390/ma16124244, PMID 37374428, PMCID PMC10300962.

Kyzioł A, Michna J, Moreno I, Gamez E, Irusta S. Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. Eur Polym J. 2017;96:350-60. doi: 10.1016/j.eurpolymj.2017.09.020.

Aydogdu A, Yildiz E, Ayhan Z, Aydogdu Y, Sumnu G, Sahin S. Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry. Eur Polym J. 2019;112:477-86. doi: 10.1016/j.eurpolymj.2019.01.006.

Balogh A, Farkas B, Verreck G, Mensch J, Borbas E, Nagy B. AC and DC electrospinning of hydroxypropylmethylcellulose with polyethylene oxides as a secondary polymer for improved drug dissolution. Int J Pharm. 2016;505(1-2):159-66. doi: 10.1016/j.ijpharm.2016.03.024, PMID 26997426.

Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review. J Control Release. 2018;292:91-110. doi: 10.1016/j.jconrel.2018.08.016, PMID 30118788.

He M, Chen M, Dou Y, Ding J, Yue H, Yin G. Electrospun silver nanoparticles-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) antibacterial composite nanofibers. Polymers. 2020;12(2):1-14. doi: 10.3390/polym12020305.

Jia Z, Li Q, liu J, Yang Y, Wang L, Guan Z. Preparation and properties of poly (vinyl alcohol) nanofibers by electrospinning. J Polym Eng. 2008;28(1-2):87-100. doi: 10.1515/POLYENG.2008.28.1-2.87.

Choi SY, Kim SH. Knowledge acquisition and representation for high-performance building design: a review for defining requirements for developing a Design Expert system. Sustainability. 2021;13(9):1-36. doi: 10.3390/su13094640.

Esenturk I, Balkan T, Ozhan G, Dosler S, Gungor S, Erdal MS. Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against Candida species. Pharm Dev Technol. 2020;25(4):440-53. doi: 10.1080/10837450.2019.1706563, PMID 31851857.

Moscoso R, Alvarez Lueje A, Squella JA. Nanostructured interfaces containing MWCNT and nitro aromatics: a new tool to determine nimesulide. Microchem J. 2020;159:1-6. doi: 10.1016/j.microc.2020.105361.

Abdul Hasan MT, Al-Shaibani AJ, Wannas AN, Hasan Al-Gburi KM. Quality control testing of conventional clopidogrel bisulfate tablets marketed in Iraq. Int J App Pharm. 2022;14:221-5. doi: 10.22159/ijap.2022v14i1.43331.

Alkufi HK, Rashid AM. Enhancement of the solubility of famotidine solid dispersion using natural polymer by solvent evaporation. Int J App Pharm. 2021;13(3):193-8. doi: 10.22159/ijap.2021v13i3.40934.

Aydogdu A, Sumnu G, Sahin S. Fabrication of gallic acid loaded hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydr Polym. 2019;208:241-50. doi: 10.1016/j.carbpol.2018.12.065, PMID 30658797.

Aytac Z, Ipek S, Erol I, Durgun E, Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids Surf B Biointerfaces. 2019;178:129-36. doi: 10.1016/j.colsurfb.2019.02.059, PMID 30852264.

Abd El Gawad S, Marzouk M, Ammar A. Preparation and evaluation of sustained release matrix formulations of voriconazole. Al-Azhar Journal of Pharmaceutical Sciences. 2023;67(1):19-36. doi: 10.21608/ajps.2023.311244.

Sinha B, Mukherjee B, Pattnaik G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. Nanomedicine. 2013;9(1):94-104. doi: 10.1016/j.nano.2012.04.005, PMID 22633899.

Hussein S, Abd-Elnaiem A, Ali N, Mebed A. Enhanced thermo-mechanical properties of poly(vinyl alcohol)/Poly(vinyl pyrrolidone) polymer blended with nanographene. Curr Nanosci. 2021;16(6):994-1001. doi: 10.2174/1573413716666200310121947.

Mohamed DF, Mahmoud OA, Mohamed FA. Preparation and evaluation of ketotifen suppositories. Journal of Advanced Biomedical and Pharmaceutical Sciences. 2020;3(1):10-22. doi: 10.21608/jabps.2019.19318.1059.

Chen R, Zhang T, Bao S, liu Y, Xu X. Formulation and characterization of voriconazole nanospray dried powders. Pharm Dev Technol. 2020;25(7):815-22. doi: 10.1080/10837450.2020.1741618, PMID 32178565.

Mori NM, Patel P, Sheth NR, Rathod lV, Ashara KC. Fabrication and characterization of film-forming voriconazole transdermal spray for the treatment of fungal infection. Bull Fac Pharm Cairo Univ. 2017;55(1):41-51. doi: 10.1016/j.bfopcu.2017.01.001.

Aydogdu A, Sumnu G, Sahin S. A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: morphology and physicochemical properties. Carbohydr Polym. 2018;181:234-46. doi: 10.1016/j.carbpol.2017.10.071, PMID 29253968.

Grip J, Engstad RE, Skjæveland I, Skalko Basnet N, Isaksson J, Basnet P. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. Eur J Pharm Sci. 2018;121:269-80. doi: 10.1016/j.ejps.2018.05.031, PMID 29864585.

Silva JA, De Gregorio PR, Rivero G, Abraham GA, Nader Macias ME. Immobilization of vaginal lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products. Eur J Pharm Sci. 2021;156:105563. doi: 10.1016/j.ejps.2020.105563, PMID 32976956.

Nageeb El-Helaly S, Abd-Elrasheed E, Salim SA, Fahmy RH, Salah S, El-Ashmoony MM. Green nanotechnology in the formulation of a novel solid dispersed multilayered core-sheath raloxifene-loaded nanofibrous buccal film; in vitro and in vivo characterization. Pharmaceutics. 2021;13(4):1-25. doi: 10.3390/pharmaceutics13040474, PMID 33915828, PMCID PMC8066100.

Kalluri L, Satpathy M, Duan Y. Effect of electrospinning parameters on the fiber diameter and morphology of plga nanofibers. Dent Oral Biol Craniofacial Res. 2021;4(2):1-19. doi: 10.31487/j.dobcr.2021.02.04, PMID 36970249, PMCID PMC10035641.

Silva P, Prieto C, lagaron J, Pastrana l, Coimbra M, Vicente A. Food-grade hydroxypropyl methylcellulose-based formulations for electrohydrodynamic processing: Part I–role of solution parameters on fibre and particle production. Food Hydrocoll. 2021;118:1-9.

Tam N, Oguz S, Aydogdu A, Sumnu G, Sahin S. Influence of solution properties and pH on the fabrication of electrospun lentil flour/HPMC blend nanofibers. Food Res Int. 2017;102:616-24. doi: 10.1016/j.foodres.2017.09.049, PMID 29195993.

Alishahi M, Khorram M, Asgari Q, Davani F, Goudarzi F, Emami A. Glucantime-loaded electrospun core-shell nanofibers composed of poly(ethylene oxide)/gelatin-poly(vinyl alcohol)/chitosan as dressing for cutaneous leishmaniasis. Int J Biol Macromol. 2020;163:288-97. doi: 10.1016/j.ijbiomac.2020.06.240, PMID 32610052.

Yin J, Fang Y, Xu L, Ahmed A. High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. Int J Biol Macromol. 2021;183:1210-21. doi: 10.1016/j.ijbiomac.2021.05.026, PMID 33984383.

Fatimah Mohammed Hussein Wais. Solubility and dissolution rate enhancement of ketoprofen by nanoparticles. Indian J Forensic Med Toxicol. 2020;14(4):2410-7. doi: 10.37506/ijfmt.v14i4.11949.

Published

07-07-2024

How to Cite

SHAWKA AL-ASADI, L. J. A., & AL-EDRESI, S. (2024). REDUCTION OF TIME AND COST IN PREPARATION OF NANOFIBERS FROM PVA, PEO AND HPMC USING DESIGN-EXPERT® SOFTWARE. International Journal of Applied Pharmaceutics, 16(4), 257–266. https://doi.org/10.22159/ijap.2024v16i4.50022

Issue

Section

Original Article(s)