AUTOMATION IN ANALYTICAL CHEMISTRY: THE ROLE OF AI IN CHROMATOGRAPHY

Authors

  • DIVEKAR KALPANA Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru-562112, India https://orcid.org/0000-0001-5198-8643
  • SHISHIR KUMAR PRASAD Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru-562112, India https://orcid.org/0000-0003-1586-0479

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50290

Keywords:

Artificial intelligence, Chromatography, Pharmaceutical sciences, Separation and Purification

Abstract

Artificial Intelligence (AI) has facilitated significant breakthroughs in drug discovery, the design of materials, and organic synthesis. The advancements in the latter group are especially remarkable due to the abilities of the latest computational methods (molecular design algorithms) that enable the exploration of extensive chemical spaces and enhance research in fields such as predicting molecule properties, designing molecules, retrosynthesis, predicting reaction conditions, and predicting reaction outcomes. A literary review was conducted following PRISMA guidelines. This study aimed to review existing data on the application of AI in separation chromatography. The evolution and utilization of AI in the pharmaceutical industry and its future aspects were articulated in this study. The utilization of AI can completely transform the field of chromatography analysis by facilitating expedited, more precise, and more effective data processing. By automating chromatography analysis, AI can enhance efficiency and minimize the potential for human mistakes. This advancement enables scientists to dedicate their efforts towards addressing intricate and demanding analytical issues. With the evolution of technology and the increasing adoption, we can anticipate more progress in chromatography analysis and analytical chemistry.

Downloads

Download data is not yet available.

References

Guiochon G. Preparative liquid chromatography. J Chromatogr A. 2002 Aug 2;965(1-2):129-61. doi: 10.1016/s0021-9673(01)01471-6, PMID 12236522.

Altenhoner U, Meurer M, Strube J, Schmidt Traub H. Parameter estimation for the simulation of liquid chromatography. J Chromatogr A. 1997 May 2;769(1):59-69. doi: 10.1016/S0021-9673(97)00173-8.

Eisele P, Killpack R. Ullmann’s encyclopedia of industrial chemistry Wiley: Chichester, UK. Vol. 101. Propene; 2010.

Zobel Roos S, Schmidt A, Mestmacker F, Mouellef M, Huter M, Uhlenbrock L. Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? Processes. 2019 Feb 13;7(2):94. doi: 10.3390/pr7020094.

Helgers H, Schmidt A, Lohmann LJ, Vetter FL, Juckers A, Jensch C. Towards autonomous operation by advanced process control-process analytical technology for continuous biologics antibody manufacturing. Processes. 2021 Jan 18;9(1):172. doi: 10.3390/pr9010172.

European Medicines Agency. EU guidelines for good manufacturing practice for medicinal products for human and veterinary use-annex 15: Qualification and validation. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/Quality/Quality–Quality-design-qbd.

Guidance for industry PAT–A framework for innovative pharmaceutical development, manufacturing, and quality assurance. Washington DC: United States Department of Health and Human Services; 2004.

Jones D, Snider C, Nassehi A, Yon J, Hicks B. Characterising the Digital Twin: A systematic literature review. CIRP J Manuf Sci Technol. 2020 May 1;29:36-52. doi: 10.1016/j.cirpj.2020.02.002.

Schmidt A, Helgers H, Vetter FL, Juckers A, Strube J. Digital twin of mRNA-based SARS-COVID-19 vaccine manufacturing towards autonomous operation for improvements in speed, scale, robustness, flexibility and real-time release testing. Processes. 2021 Apr 23;9(5):748. doi: 10.3390/pr9050748.

Gerogiorgis DI, Castro Rodriguez D. A digital twin for process optimisation in pharmaceutical manufacturing. In: Computer aided chemical engineering. Vol. 50. Elsevier; 2021 Jan 1. doi: 10.1016/B978-0-323-88506-5.50041-3.

Wang G, Briskot T, Hahn T, Baumann P, Hubbuch J. Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks. J Chromatogr A. 2017 Mar 3;1487:211-7. doi: 10.1016/j.chroma.2017.01.068, PMID 28159368.

La Porta CA, Zapperi S. Explaining the dynamics of tumor aggressiveness: at the crossroads between biology, AIand complex systems. In: Seminars in cancer biology. Vol. 53. Academic Press; 2018.

Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial intelligence in breast imaging. Clin Radiol. 2019 May 1;74(5):357-66. doi: 10.1016/j.crad.2019.02.006, PMID 30898381.

Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019 Aug 1;40(8):592-604. doi: 10.1016/j.tips.2019.06.004, PMID 31320117.

Hippe Z. Problems in the application of artificial intelligence in analytical chemistry. Anal Chim Acta. 1983 Jan 1;150:11-21. doi: 10.1016/S0003-2670(00)85455-0.

Brady M. AIand robotics Artif. Intell. 1985.

Bahiraei M, Heshmatian S, Moayedi H. Artificial intelligence in the field of nanofluids: a review on applications and potential future directions. Powder Technol. 2019 Jul 15;353:276-301. doi: 10.1016/j.powtec.2019.05.034.

Richardson A, Signor BM, Lidbury BA, Badrick T. Clinical chemistry in higher dimensions: machine-learning and enhanced prediction from routine clinical chemistry data. Clin Biochem. 2016 Nov 1;49(16-17):1213-20. doi: 10.1016/j.clinbiochem.2016.07.013, PMID 27452181.

Kalayil NV, D’Souza SS, Khan SY, Paul P. AIin pharmacy drug design. Artif Intell. 2022;15(4).

Sujith T, Chakradhar T, Marpaka S, Sowmini K. Aspects of utilization and limitations of AIin drug safety. Asian J Pharm Clin Res. 2021;14(8):34-9.

Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Transl Res. 2018 Apr 1;194:36-55. doi: 10.1016/j.trsl.2017.12.004, PMID 29360430.

Nayak J, Vakula K, Dinesh P, Naik B, Pelusi D. Intelligent food processing: journey from artificial neural network to deep learning. Comput Sci Rev. 2020 Nov 1;38:100297. doi: 10.1016/j.cosrev.2020.100297.

Engkvist O, Norrby PO, Selmi N, Lam YH, Peng Z, Sherer EC. Computational prediction of chemical reactions: current status and outlook. Drug Discov Today. 2018 Jun 1;23(6):1203-18. doi: 10.1016/j.drudis.2018.02.014, PMID 29510217.

Panteleev J, Gao H, Jia L. Recent applications of machine learning in medicinal chemistry. Bioorg Med Chem Lett. 2018 Sep 15;28(17):2807-15. doi: 10.1016/j.bmcl.2018.06.046, PMID 30122222.

Szymanska E. Modern data science for analytical chemical data-a comprehensive review. Anal Chim Acta. 2018 Oct 22;1028:1-10. doi: 10.1016/j.aca.2018.05.038, PMID 29884345.

Jimenez Carvelo AM, Gonzalez Casado A, Bagur Gonzalez MG, Cuadros Rodriguez L. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity-a review. Food Res Int. 2019 Aug 1;122:25-39. doi: 10.1016/j.foodres.2019.03.063, PMID 31229078.

Reichenbach SE, Zini CA, Nicolli KP, Welke JE, Cordero C, Tao Q. Benchmarking machine learning methods for comprehensive chemical fingerprinting and pattern recognition. J Chromatogr A. 2019 Jun 21;1595:158-67. doi: 10.1016/j.chroma.2019.02.027, PMID 30833025.

Zhong S, Zhang K, Wang D, Zhang H. Shedding light on ”Black Box” machine learning models for predicting the reactivity of HO radicals toward organic compounds. Chem Eng J. 2021 Feb 1;405:126627. doi: 10.1016/j.cej.2020.126627.

Zhang Y, Li A, Deng B, Hughes KK. Data-driven predictive models for chemical durability of oxide glass under different chemical conditions. NPJ Mater Degrad. 2020 May 26;4(1):14. doi: 10.1038/s41529-020-0118-x.

Mouellef M, Vetter FL, Zobel Roos S, Strube J. Fast and versatile chromatography process design and operation optimization with the aid of artificial intelligence. Processes. 2021 Nov 25;9(12):2121. doi: 10.3390/pr9122121.

Raymond L. The introduction of AIto help in the analysis of the chromatographic big data. J Chromatogr Sep Tech. 2019;10.

Keulen D, Geldhof G, Le Bussy OL, Pabst M, Ottens M. Recent advances to accelerate purification process development: a review with a focus on vaccines. J Chromatogr A. 2022 Aug 2;1676:463195. doi: 10.1016/j.chroma.2022.463195, PMID 35749985.

Peichang L, Xiaoming L. Development of a high-performance liquid chromatograph with artificial intelligence. J Chromatogr A. 1984 May 25;292(1):169-88. doi: 10.1016/S0021-9673(01)96200-4.

Liu D, Sun N. Prospects of artificial intelligence in the development of sustainable separation processes. Front Sustain. 2023;4:1210209. doi: 10.3389/frsus.2023.1210209.

Singh YR, Shah DB, Maheshwari DG, Shah JS, Shah S. Advances in AI-driven retention prediction for different chromatographic techniques: unraveling the complexity. Crit Rev Anal Chem. 2023 Aug 31:1. doi: 10.1080/10408347.2023.2254379.

Aghili NS, Rasekh M, Karami H, Azizi V, Gancarz M. Detection of fraud in sesame oil with the help of artificial intelligence combined with chemometrics methods and chemical compounds characterization by gas chromatography-mass spectrometry. LWT. 2022 Sep 15;167:113863. doi: 10.1016/j.lwt.2022.113863.

Leite MS, Santos MA, Costa EM, Balieiro A, Lima ÁS, Sanchez OL. Modeling of milk lactose removal by column adsorption using artificial neural networks: MLP and RBF. Chem Ind Chem Eng Q. 2019;25(4):369-82. doi: 10.2298/CICEQ180606015L.

Viejo CG, Fuentes S, Godbole A, Widdicombe B, Unnithan RR. Development of a low-cost e-nose to assess aroma profiles: an aIapplication to assess beer quality. Sens Actuators B. 2020 Apr 1;308:127688.

Warren Vega WM, Contreras Atrisco ZA, Ramirez Quezada MF, Romero Cano LA. A novel approach of artificial intelligence for the study of the relation of physicochemical profile and color acquired by Tequila 100% agave in its maturation process. J Food Compos Anal. 2023 Oct 1;123:105533. doi: 10.1016/j.jfca.2023.105533.

Ghali UM, Usman AG, Chellube ZM, Degm MA, Hoti K. Advanced chromatographic technique for performance simulation of anti-Alzheimer agent: an ensemble machine learning approach. SN Appl Sci. 2020 Nov;2:1-2.

Satwekar A, Panda A, Nandula P, Sripada S, Govindaraj R, Rossi M. Digital by design approach to develop a universal deep learning AI architecture for automatic chromatographic peak integration. Biotechnol Bioeng. 2023 Apr 22;120(7):1822-43. doi: 10.1002/bit.28406, PMID 37086414.

De Vooght Johnson R. AI produces peak prediction perfection. Wiley Anal Sci. 2021.

Usman AG, Isik S, Abba SI, Mericli F. Artificial intelligence-based models for the qualitative and quantitative prediction of a phytochemical compound using HPLC method. Turk J Chem. 2020;44(5):1339-51. doi: 10.3906/kim-2003-6, PMID 33488234.

Keulen D, Geldhof G, Le Bussy OL, Pabst M, Ottens M. Recent advances to accelerate purification process development: a review with a focus on vaccines. J Chromatogr A. 2022 Aug 2;1676:463195. doi: 10.1016/j.chroma.2022.463195, PMID 35749985.

Liu D, Sun N. Prospects of artificial intelligence in the development of sustainable separation processes. Front Sustain. 2023;4:1210209. doi: 10.3389/frsus.2023.1210209.

Beal LD, Hill DC, Martin RA, Hedengren JD. Gekko optimization suite. Processes. 2018 Jul 31;6(8):106. doi: 10.3390/pr6080106.

Mouellef M, Vetter FL, Zobel Roos S, Strube J. Fast and versatile chromatography process design and operation optimization with the aid of artificial intelligence. Processes. 2021 Nov 25;9(12):2121. doi: 10.3390/pr9122121.

Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989 Jan 1;2(5):359-66. doi: 10.1016/0893-6080(89)90020-8.

Uhl A, Schmidt A, Hlawitschka MW, Strube J. Autonomous liquid–liquid extraction operation in biologics manufacturing with aid of a digital twin including process analytical technology. Processes. 2023 Feb 10;11(2):553. doi: 10.3390/pr11020553.

Zobel Roos S, Schmidt A, Mestmacker F, Mouellef M, Huter M, Uhlenbrock L. Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? Processes. 2019 Feb 13;7(2):94. doi: 10.3390/pr7020094.

Golubovic J, Protic A, Zecevic M, Otasevic B, Mikic M. Artificial neural networks modeling in ultra performance liquid chromatography method optimization of mycophenolate mofetil and its degradation products. J Chemom. 2014 Jul;28(7):567-74. doi: 10.1002/cem.2616.

Nagrath D, Messac A, Bequette BW, Cramer SM. A hybrid model framework for the optimization of preparative chromatographic processes. Biotechnol Prog. 2004;20(1):162-78. doi: 10.1021/bp034026g, PMID 14763840.

Pirrung SM, van der Wielen LAM, van Beckhoven RFWC, van de Sandt EJAX, Eppink MHM, Ottens M. Optimization of biopharmaceutical downstream processes supported by mechanistic models and artificial neural networks. Biotechnol Prog. 2017 May;33(3):696-707. doi: 10.1002/btpr.2435, PMID 28054462.

Natarajan V, Bequette BW, Cramer SM. Optimization of ion-exchange displacement separations. I. Validation of an iterative scheme and its use as a methods development tool. J Chromatogr A. 2000 Apr 21;876(1-2):51-62. doi: 10.1016/s0021-9673(00)00138-2, PMID 10823501.

Karlov DS, Sosnin S, Tetko IV, Fedorov MV. Chemical space exploration guided by deep neural networks. RSC Adv. 2019;9(9):5151-7. doi: 10.1039/c8ra10182e, PMID 35514634.

Indolia S, Goswami AK, Mishra SP, Asopa P. Conceptual understanding of convolutional neural network-a deep learning approach. Procedia Comput Sci. 2018 Jan 1;132:679-88. doi: 10.1016/j.procs.2018.05.069.

Guerra E, de Lara J, Malizia A, Diaz P. Supporting user-oriented analysis for multi-view domain-specific visual languages. Inf Softw Technol. 2009 Apr 1;51(4):769-84. doi: 10.1016/j.infsof.2008.09.005.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2016. p. 770-8. doi: 10.1109/CVPR.2016.90.

Krizhevsky A, Sutskever I, Hinton GE. Image net classification with deep convolutional neural networks. Commun ACM. 2017 May 24;60(6):84-90. doi: 10.1145/3065386.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 2261-9. doi: 10.1109/CVPR.2017.243.

Randazzo GM, Bileck A, Danani A, Vogt B, Groessl M. Steroid identification via deep learning retention time predictions and two-dimensional gas chromatography-high resolution mass spectrometry. J Chromatogr A. 2020 Feb 8;1612:460661. doi: 10.1016/j.chroma.2019.460661, PMID 31708215.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735, PMID 9377276.

Ayres LB, Gomez FJV, Linton JR, Silva MF, Garcia CD. Taking the leap between analytical chemistry and artificial intelligence: a tutorial review. Anal Chim Acta. 2021 May 29;1161:338403. doi: 10.1016/j.aca.2021.338403, PMID 33896558.

de Araujo Padilha CE, de Araujo Padilha CA, de Santana Souza DF, de Oliveira JA, de Macedo GR, dos Santos ES. Recurrent neural network modeling applied to expanded bed adsorption chromatography of chitosanases produced by Paenibacillus ehimensis. Chem Eng Res Des. 2017 Jan 1;117:24-33. doi: 10.1016/j.cherd.2016.09.022.

Published

07-05-2024

How to Cite

KALPANA, D., & PRASAD, S. K. (2024). AUTOMATION IN ANALYTICAL CHEMISTRY: THE ROLE OF AI IN CHROMATOGRAPHY. International Journal of Applied Pharmaceutics, 16(3), 14–21. https://doi.org/10.22159/ijap.2024v16i3.50290

Issue

Section

Review Article(s)