DEVELOPMENT AND OPTIMIZATION OF A DOLUTEGRAVIR NANOSUSPENSION USING BOX BEHNKEN DESIGN
DOI:
https://doi.org/10.22159/ijap.2024v16i3.50315Keywords:
Dolutegravir, Nanosuspension, Sonoprecipitation, Box-behnken design, Antiviral therapyAbstract
Objective: This study aimed to develop and optimize a nanosuspension of Dolutegravir, an integrase inhibitor with low aqueous solubility, using the sonoprecipitation technique. The objective was to enhance the drug's solubility and oral bioavailability by preparing nanosuspension.
Methods: A box-behnken design was employed to systematically investigate the impact of stabilizer concentration, sonication amplitude, and time on the particle size and polydispersibility of the nanosuspension formulations. Various stabilizers, including Soluplus®, Poloxamer 188, Poly Vinyl Pyrrolidone (PVP) K90, Hydroxy Propyl Methyl Cellulose (HPMC), and Tween 80, were evaluated. Fourier transform infrared spectroscopy confirmed drug-polymer interactions, while differential scanning calorimetry and X-ray diffraction revealed partial amorphization. Scanning electron microscopy confirmed nanoscale particle size and morphology.
Results: The optimized formulation (NS6) with 1% Soluplus®, 65 W amplitude, and 10 min sonication exhibited nanoparticles of 75.3 nm with low polydispersity. NS6 demonstrated enhanced drug release compared to the pure drug, attributed to particle size reduction and amorphization. In vitro tests indicated acceptable stability over time and temperature.
Conclusion: The application of Box-Behnken design resulted in an optimized nanosuspension formulation capable of improving the oral bioavailability of poorly soluble Dolutegravir. The formulation exhibited favorable characteristics, including reduced particle size, amorphization, and enhanced drug release, highlighting its potential as an effective delivery system for Dolutegravir in Human Immuno Deficiency Virus (HIV) treatment.
Downloads
References
Rathbun RC, Lockhart SM, Miller MM, Liedtke MD. Dolutegravir, a second-generation integrase inhibitor for the treatment of HIV-1 infection. Ann Pharmacother. 2014 Mar;48(3):395-403. doi: 10.1177/1060028013513558, PMID 24259658.
Castellino S, Moss L, Wagner D, Borland J, Song I, Chen S. Metabolism, excretion, and mass balance of the HIV-1 integrase inhibitor dolutegravir in humans. Antimicrob Agents Chemother. 2013 Aug;57(8):3536-46. doi: 10.1128/AAC.00292-13, PMID 23669385.
Homayouni A, Amini M, Sohrabi M, Varshosaz J, Nokhodchi A. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization. Int J Pharm. 2019;562:124-34. doi: 10.1016/j.ijpharm.2019.03.038, PMID 30898640.
Sarella PNK, Thammana PK. Potential applications of Folate-conjugated chitosan Nanoparticles for Targeted delivery of Anticancer drugs. Res J Pharm Dosage Forms Technol. 2023;15(4):281-8.
Rashid AM, Abdal Hammid SN. Formulation and characterization of itraconazole as nanosuspension dosage form for enhancement of solubility. Iraqi J Pharm Sci. 2019;28(2):124-33. doi: 10.31351/vol28iss2pp124-133.
Mehrotra S, Bg PK, Bhaskaran NA, Reddy JS, Kumar L. Nose-to-brain delivery of antiretroviral drug loaded lipidic nanocarriers to purge HIV reservoirs in CNS: a safer approach. Journal of Drug Delivery Science and Technology. 2023;87:104833. https://doi.org/10.1016/j.jddst.2023.104833
Muheem A, Nehal N, Sartaj A, Baboota S, Ali J. Importance of P-gp inhibitors and nanoengineered approaches for effective delivery of antiretroviral drugs across barriers in HIV management. J Drug Deliv Sci Technol. 2023;87:104791.
Kumar P, KB CS. Bioavailability and dissolution enhancement of glyburide nanosuspension. Asian J Pharm Clin Res. 2019;12(4):111-8.
Rizwanullah MD, Rizvi MMA, Amin S. Recent advances in the development of nanoparticles for oral delivery. Pharm Drug Prod Dev Process Optim Effect Use Qual Des. 2020:309-32.
Tyagi Y, Madhav NVS. Smart innovative approach for designing fluvoxamine loaded bio-nanosuspension for the management of depression. Int J App Pharm. 2019;11(1):191. doi: 10.22159/ijap.2019v11i1.28212.
Hamsika M, Gowda DV, Vindru J, Moin A. Nanotechnology for ophthalmic preparations. Int J Curr Pharm Res. 2016;8(2):5-11.
Almeida de AM, Castel Branco MM, Falcao AC. Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;774(2):215-22. doi: 10.1016/s1570-0232(02)00244-1, PMID 12076691.
Breaux J, Jones K, Boulas P. Analytical methods development and validation. Pharm Technol. 2003;1:6-13.
Chaurasia G. A review on pharmaceutical preformulation studies in formulation and development of new drug molecules. Int J Pharm Sci Res. 2016;7(6):2313-20.
Banker GS. The theory and practice of industrial pharmacy. J Pharm Sci. 1970 Oct;59(10):1531.
Macian V, Tormos B, Garcia Barbera A, Tsolakis A. Applying chemometric procedures for correlation the FTIR spectroscopy with the new thermometric evaluation of total acid number and total basic number in engine oils. Chemom Intell Lab Syst. 2021;208:104215. doi: 10.1016/j.chemolab.2020.104215.
Chadha R, Bhandari S. Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82-97. doi: 10.1016/j.jpba.2013.06.016, PMID 23845418.
Zhang Y, Li Z, Tang H, Ren W, Gao X, Sun Y. Development and optimization of levodopa and benzylhydrazine orally disintegrating tablets by direct compression and response surface methodology. Drug Dev Ind Pharm. 2020 Jan 2;46(1):42-9. doi: 10.1080/03639045.2019.1698597, PMID 31794271.
Shahbazi MA, Almeida PV, Makila EM, Kaasalainen MH, Salonen JJ, Hirvonen JT. Amorphous and crystalline sections of individual pharmaceutical particles visualized by focused ion beam and scanning electron microscopy. ACS Nano. 2014;8(12):12583-90.
Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20. doi: 10.1023/a:1016212804288, PMID 7617530.
Radomska Soukharev AR. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):411-8. doi: 10.1016/j.addr.2007.04.004, PMID 17553589.
Aanish Ali MA, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist’s perspective. RSC Adv. 2022;13(1):47-79. doi: 10.1039/D2RA06410C.
McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release. 2022;345:334-53. doi: 10.1016/j.jconrel.2022.03.012, PMID 35283257.
Mothilal M, Krishna MC, Teja SS, Manimaran V, Damodharan N. Formulation and evaluation of naproxen-eudragit® RS 100 nanosuspension using 32 factorial design. Int J Pharm Pharm Sci. 2014;6(7):449-55.
Shankar Raman S, Narayanan VHB, Durai R. Lamotrigine nanoparticle laden polymer composite oral dissolving films for improving therapeutic potential of the hydrophobic antiepileptic molecule. Assay Drug Dev Technol. 2021 Jan 1;19(1):2-16. doi: 10.1089/adt.2020.992, PMID 33216611.
Kilor V, Sapkal N, Daud A, Humne S, Gupta T. Development of stable nanosuspension loaded oral films of glimepiride with improved bioavailability. Int J App Pharm. 2017;9(2):28-33. doi: 10.22159/ijap.2017v9i2.16714.
Dawood NM, Abdal-hammid SN, Hussien AA. Formulation and characterization of lafutidine nanosuspension for oral drug delivery system. Int J App Pharm. 2018;10(2):20-30. doi: 10.22159/ijap.2018v10i2.23075.
Sumathi R, Tamizharasi S, Sivakumar T. Formulation and evaluation of polymeric nanosuspension of naringenin. Int J App Pharm. 2017;9(6):60-70. doi: 10.22159/ijap.2017v9i6.21674.
Jassem NA, Rajab NA. Formulation and in vitro evaluation of azilsartan medoxomil nanosuspension. Int J Pharm Pharm Sci. 2017;9(7):110. doi: 10.22159/ijpps.2017v9i7.18917.
Salem HF, Kharshoum RM. Nanoprecipitation technique for preparation of sterically stabilized risperidone nanosuspension: in vitro and in vivo study. Int J Pharm Pharm Sci. 2016;8(5):136-42.
Hirlekar SDS, Bhairy S, Bhairy S, Hirlekar R, Hirlekar R. Preparation and characterization of oral nanosuspension loaded with curcumin. Int J Pharm Pharm Sci. 2018;10(6):90-5. doi: 10.22159/ijpps.2018v10i6.22027.
Somasundaram I, Kumar SS. Preparation and evaluation of pramipexole dihydrochloride loaded chitosan nanoparticles for brain-targeting. Res J of Pharm and Technol. 2017;10(1):245. doi: 10.5958/0974-360X.2017.00051.8.
Deshkar SS, Bhalerao SG, Jadhav MS, Shirolkar SV. Formulation and optimization of topical solid lipid nanoparticles based gel of dapsone using design of experiment. Pharm Nanotechnol. 2018;6(4):264-75. doi: 10.2174/2211738506666181105141522, PMID 30394227.
Peppas NA. Analysis of fickian and non-fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110-1. PMID 4011621.
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25-35. doi: 10.1016/0378-5173(83)90064-9.
M Agrawal, S Khan. A formulation and evaluation of nanosuspension of valsartan. Int J Curr Pharm Sci 2018;10(2). doi: 10.22159/ijcpr.2018v10i2.25874.
Aher SS, Malsane ST, Saudagar RB. Nanosuspension: an overview. Asian J Res Pharm Sci. 2017;7(2):81-6. doi: 10.5958/2231-5659.2017.00012.1.
Purkayastha HD, Hossian SKI. Nanosuspension: a modern technology used in drug delivery system. Int J Curr Pharm Sci. 2019;11(3):1-3. doi: 10.22159/ijcpr.2019v11i3.34098.
Labib S, Nasr M, Nasr M. Formulation and evaluation of atorvastatin calcium nanocrystals containing p-glycoprotein inhibitors for enhancing oral delivery. Int J Curr Pharm Sci. 2021;13(3):19-23. doi: 10.22159/ijcpr.2021v13i3.42087.
Zhang K, Yu H, Luo Q, Yang S, Lin X, Zhang Y. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur J Pharm Biopharm. 2013;85(3 Pt B):1285-92. doi: 10.1016/j.ejpb.2013.03.002, PMID 23562534.
Yang H, Teng F, Wang P, Tian B, Lin X, Hu X. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability. Int J Pharm. 2014;477(1-2):88-95. doi: 10.1016/j.ijpharm.2014.10.025, PMID 25455766.
Varshosaz J, Minayian M, Yazdekhasti S. Physicochemical, pharmacodynamic and pharmacokinetic characterization of soluplus stabilized nanosuspension of tacrolimus. Curr Drug Deliv. 2017;14(4):521-35. doi: 10.2174/1567201813666161003150649, PMID 27697037.
Shekhawat P, Pokharkar V. Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: in vitro characterization, PAMPA and in vivo assessment. Int J Pharm. 2019;567:118415. doi: 10.1016/j.ijpharm.2019.06.006, PMID 31175989.
Sharma OP, Patel V, Mehta T. Design of experiment approach in development of febuxostat nanocrystal: application of Soluplus® as stabilizer. Powder Technol. 2016;302:396-405. doi: 10.1016/j.powtec.2016.09.004.
Li C, Deng Y. A novel method for the preparation of liposomes: freeze drying of monophase solutions. J Pharm Sci. 2004;93(6):1403-14. doi: 10.1002/jps.20055, PMID 15124200.
Liu J, Wang Q, Omari Siaw E, Adu-Frimpong M, Liu J, Xu X. Enhanced oral bioavailability of bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: formulation design, in vitro and in vivo evaluation. Int J Pharm. 2020;590:119887. doi: 10.1016/j.ijpharm.2020.119887, PMID 32950666.
Gajera BY, Shah DA, Dave RH. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int J Pharm. 2019;559:348-59. doi: 10.1016/j.ijpharm.2019.01.054, PMID 30721724.
Published
How to Cite
Issue
Section
Copyright (c) 2024 LAKSHMI DEVI GOTTEMUKKULA, RAGHUVEER PATHURI
This work is licensed under a Creative Commons Attribution 4.0 International License.