ENHANCING THE ABSORPTION OF RUTIN AND EFFECTIVE CANCER MANAGEMENT THROUGH HYALURONIC ACID FUNCTIONALIZED NANOPARTICLES

Authors

  • S. SRI BHUVANESWARI Department of Pharmacy, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India https://orcid.org/0000-0002-2932-0038
  • D. KUMUDHA Department of Pharmacy, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50749

Keywords:

Nanoparticles, Cancer cell, Rutin, RTN and HA RTN

Abstract

Objective: The objective of this study is to develop Rutin Nanoparticles (RTN) and coat them with Hyaluronic Acid (HA) to overcome rutin's solubility and bioavailability limitations, and to enhance its uptake by cancer cells through selective delivery mechanisms.

Methods: RTN were synthesized employing soya lecithin and chitosan through the homogenization technique. To further enhance the delivery of rutin to cancer cells, the optimized nanoparticle formulation was coated with HA to enhance its accumulation in cancer cells. The nanoparticles were characterized in terms of particle size (PS) distribution, zeta potential (ZP), entrapment efficiency (EE), morphology, in vitro drug release and in vitro cytotoxicity activities.

Results: The resulting RTN and HA-coated RTN (HA RTN) exhibited particle sizes of 202.8 nm and 714 nm, with Polydispersity index (PDI) values of 26.4% and 25.5%, respectively. These findings suggest favourable stability and potential for cellular uptake. Moreover, in vitro examinations of drug release showcased a prolonged release pattern consistent with the Higuchi kinetic model, indicating a mechanism where drug release is primarily governed by diffusion. The in vitro cytotoxicity assay revealed that the HA RTN formulation demonstrated superior efficacy in inhibiting MCF-7 cells compared to free rutin and the uncoated RTN, as evidenced by the respective IC50 values of 145µg, 342 µg, and 413 µg.

Conclusion: These findings highlight the promising potential of the HA RTN formulation as an effective anti-cancer treatment, paving the way for further development and clinical application of rutin-loaded nanoparticles in cancer therapy.

Downloads

Download data is not yet available.

References

Ganeshpurkar A, Saluja AK. The pharmacological potential of Rutin. Saudi Pharm J. 2017;25(2):149-64. doi: 10.1016/j.jsps.2016.04.025, PMID 28344465.

Prasad R, Prasad SB. A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent. Asian J Pharm Pharmacol. 2019;5Suppl 1:1-20. doi: 10.31024/ajpp.2019.5.s1.1.

Pivec T, Kargl R, Maver U, Bracic M, Elschner T, Zagar E. Chemical structure-antioxidant activity relationship of water-based enzymatic polymerized rutin and its wound healing potential. Polymers. 2019;11(10):1566. doi: 10.3390/polym11101566, PMID 31561552.

Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457. doi: 10.3390/nu12020457, PMID 32059369.

Choi SS, Park HR, Lee KA. A comparative study of rutin and rutin glycoside: antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation. Antioxidants (Basel). 2021;10(11):1696. doi: 10.3390/antiox10111696, PMID 34829567.

Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191. doi: 10.3390/pharmaceutics10040191, PMID 30340327.

De Gaetano F, Cristiano MC, Venuti V, Crupi V, Majolino D, Paladini G. Rutin-loaded solid lipid nanoparticles: characterization and in vitro evaluation. Molecules. 2021;26(4):1039. doi: 10.3390/molecules26041039, PMID 33669321.

Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid lipid nanoparticles: applications and prospects in cancer treatment. Int J Mol Sci. 2023;24(7):6199. doi: 10.3390/ijms24076199, PMID 37047172.

Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev. 2016;97:204-36. doi: 10.1016/j.addr.2015.11.011, PMID 26592477.

Song JM, Im J, Nho RS, Han YH, Upadhyaya P, Kassie F. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog. 2019;58(3):321-33. doi: 10.1002/mc.22930, PMID 30365189.

Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25(1):766-72. doi: 10.1080/10717544.2018.1450910, PMID 29536778.

Yassin AE, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA. Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci. 2010;7(6):398-408. doi: 10.7150/ijms.7.398, PMID 21103076.

Sonvico F, Cagnani A, Rossi A, Motta S, Di Bari MT, Cavatorta F. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int J Pharm. 2006;324(1):67-73. doi: 10.1016/j.ijpharm.2006.06.036, PMID 16973314.

Perez Ruiz AG, Ganem A, Olivares Corichi IM, Garcia Sanchez JR. Lecithin-chitosan-TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Adv. 2018;8(61):34773-82. doi: 10.1039/c8ra06327c, PMID 35547028.

Onugwu AL, Attama AA, Nnamani PO, Onugwu SO, Onuigbo EB, Khutoryanskiy VV. Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J Drug Deliv Sci Technol. 2022;74:103527. doi: 10.1016/j.jddst.2022.103527.

Shen H, Shi S, Zhang Z, Gong T, Sun X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015;5(7):755-71. doi: 10.7150/thno.10804, PMID 25897340.

Siram K, Karuppaiah A, Gautam M, Sankar V. Fabrication of hyaluronic acid surface modified solid lipid nanoparticles loaded with imatinib mesylate for targeting human breast cancer MCF-7 cells. J Clust Sci. 2023;34(2):921-31. doi: 10.1007/s10876-022-02265-y.

Shrivastava S, Kaur CD. Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: formulation, optimization, characterization, in vitro, and in vivo evaluation. Drug Deliv Transl Res. 2023;13(2):658-74. doi: 10.1007/s13346-022-01230-6, PMID 35978260.

Adeyemi SA, Az-Zamakhshariy Z, Choonara YE. In vitro prototyping of a nano-organogel for thermo-sonic intra-cervical delivery of 5-fluorouracil-loaded solid lipid nanoparticles for cervical cancer. AAPS Pharm Sci Tech. 2023;24(5):123. doi: 10.1208/s12249-023-02583-y, PMID 37226039.

Rahman MA, Ali A, Rahamathulla M, Salam S, Hani U, Wahab S. Fabrication of sustained release curcumin-loaded solid lipid nanoparticles (cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: optimization of formulation and in vitro biological evaluation. Polymers. 2023;15(3):542. doi: 10.3390/polym15030542, PMID 36771843.

Korake S, Bothiraja C, Pawar A. Design, development, and in vitro/in vivo evaluation of docetaxel-loaded PEGylated solid lipid nanoparticles in prostate cancer therapy. Eur J Pharm Biopharm. 2023;189:15-27. doi: 10.1016/j.ejpb.2023.05.020, PMID 37270157.

Jain A, Vyas SP. Formulation and characterization of gdl-based artesunate solid lipid nanoparticle. Int J App Pharm. 2023;15(5):68-74. doi: 10.22159/ijap.2023v15i5.48913.

Homayouni Tabrizi MH, Soltani M, Es-haghi A. Preparation and characterization of the farnesiferol C-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its in vitro anti-cancer and anti-angiogenic activities. J Mol Liq. 2023;382:121908. doi: 10.1016/j.molliq.2023.121908.

Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23):12827. doi: 10.3390/ijms222312827, PMID 34884632.

Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi M. Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment. Mol Biol Rep. 2023;50(11):9417-30. doi: 10.1007/s11033-023-08848-w, PMID 37831347.

Suryavanshi A, Kumar S, Arya DK. Evaluation of phytochemical and antibacterial potential of Ajuga parviflora Benth Med Plnts Int J Phyt Rela Ind. 2020;12(1):144-9. doi: 10.5958/0975-6892.2020.00019.2.

Tariq H, Rehman A, Kishwar F, Raza ZA. Micellar synthesis of lime oil-loaded chitosan microstructures for the sustainable development of antibacterial cellulosic fabric. Cellulose. 2023;30(17):11177-94. doi: 10.1007/s10570-023-05469-1.

Nandiyanto AB, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol. 2019;4(1):97-118. doi: 10.17509/ijost.v4i1.15806.

Pan NC, Pereira HC, da Silva ML, Vasconcelos AF, Celligoi MA. Improvement production of hyaluronic acid by streptococcus zooepidemicus in sugarcane molasses. Appl Biochem Biotechnol. 2017;182(1):276-93. doi: 10.1007/s12010-016-2326-y, PMID 27900664.

Shrivastava S, Kaur CD. Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: formulation, optimization, characterization, in vitro, and in vivo evaluation. Drug Deliv Transl Res. 2023;13(2):658-74. doi: 10.1007/s13346-022-01230-6, PMID 35978260.

Bibi M, Din F, Anwar Y, Alkenani NA, Zari AT, Mukhtiar M. Cilostazol-loaded solid lipid nanoparticles: bioavailability and safety evaluation in an animal model. J Drug Deliv Sci Technol. 2022;74. doi: 10.1016/j.jddst.2022.103581.

Parvez S, Karole A, Mudavath SL. Fabrication, physicochemical characterization and in vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids Surf B Biointerfaces. 2022;215:112520. doi: 10.1016/j.colsurfb.2022.112520, PMID 35489319.

De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D. Solid lipid nanoparticles containing morin: preparation, characterization, and ex vivo permeation studies. Pharmaceutics. 2023;15(6):1605. doi: 10.3390/pharmaceutics15061605, PMID 37376054.

Stella B, Peira E, Dianzani C, Gallarate M, Battaglia L, Gigliotti CL. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials (Basel). 2018;8(2). doi: 10.3390/nano8020110, PMID 29462932.

Perez Ruiz AG, Ganem A, Olivares Corichi IM, Garcia Sanchez JR. Lecithin-chitosan-TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Adv. 2018;8(61):34773-82. doi: 10.1039/c8ra06327c, PMID 35547028.

Kis B, Pavel IZ, Avram S, Moaca EA, Herrero San Juan M, Schwiebs A. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of populus nigra L. buds extract. BMC Complement Med Ther. 2022;22(1):74. doi: 10.1186/s12906-022-03526-z, PMID 35296309.

Dudhat KR, V Patel HV. Novel nanoparticulate systems for idiopathic pulmonary fibrosis: a review. Asian J Pharm Clin Res. 2020 Nov 7;13(11):3-11. doi: 10.22159/ajpcr.2020.v13i11.39035.

Datta A, Das A, Ghosh R. Eudragit® Rl100 microspheres as a delayed-release system for ibuprofen: in vitro evaluation. Int J Pharm Pharm Sci. 2024;14(12):6-10. doi: 10.22159/ijpps.2022v14i12.45838.

Arumugam K, D Borawake P, Shinde JV. Formulation and evaluation of floating microspheres of ciprofloxacin by solvent evaporation method using different polymers. Int J Pharm Pharm Sci 2021;13(7):101-8. doi: 10.22159/ijpps.2021v13i7.41204.

Shivalingam MR, Balasubramanian A, Ramalingam K. Formulation and evaluation of transdermal patches of pantoprazole sodium. Int J App Pharm. 2021;13(5):287-91. doi: 10.22159/ijap.2021v13i5.42175.

Published

07-07-2024

How to Cite

BHUVANESWARI, S. S., & KUMUDHA, D. (2024). ENHANCING THE ABSORPTION OF RUTIN AND EFFECTIVE CANCER MANAGEMENT THROUGH HYALURONIC ACID FUNCTIONALIZED NANOPARTICLES. International Journal of Applied Pharmaceutics, 16(4), 208–217. https://doi.org/10.22159/ijap.2024v16i4.50749

Issue

Section

Original Article(s)