SYNTHESIS, CHARACTERIZATION AND IN VITRO EVALUATION OF VATERITE MICROPARTICLES

Authors

  • DEENA JOSE Faculty of Pharmacy, Karpagam Academy of Higher Education, Tamil Nadu, India https://orcid.org/0000-0001-5468-6130
  • D. KUMUDHA Faculty of Pharmacy, Karpagam Academy of Higher Education, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51569

Keywords:

Calcium carbonate, Vaterite particles, Anti-oxidant activity, Anti-inflammatory activity

Abstract

Objective: The aim of this research is to synthesize submicron-sized calcium carbonate vaterite particles of elliptical shape with different reaction durations. We also aim to assess their antioxidant and anti-inflammatory properties, which may be beneficial for treating diseases such as asthma and rheumatoid arthritis.

Methods: Calcium carbonate vaterite particles were prepared using the co-precipitation method with varying reaction times, characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transformation Infrared Spectroscopy (FTIR), and Poly-Dispersity Index, with antioxidant activity assessed by the 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) method and anti-inflammatory activity by the protein denaturation method.

Results: SEM and TEM analysis revealed that the synthesized vaterite particles had an elliptical shape with nano-crystalline particles of around 50 nm size. FTIR verified the production of vaterite particles. Research on antioxidants and anti-inflammatory agents revealed that the crystalline particles exhibited DPPH scavenging action, with an IC50 of 12.6 µg/ml, and a noteworthy reduction in protein denaturation in the albumin protein denaturation test, with an IC50 of 222.49 µg/ml, in comparison to the reference value.

Conclusion: The results highlight the potential of elliptical vaterite submicron micro-particles as versatile platforms with anti-inflammatory and antioxidant properties, paving the way for future advancements in drug delivery systems, food additives, and natural supplements by efficiently encapsulating drugs and proteins.

Downloads

Download data is not yet available.

References

Agrawala P. Pharmaceutical dosage forms: tablets. Journal of Pharmaceutical Sciences. 1990;79(2):188. doi: 10.1002/jps.2600790225.

Xu C, Yan Y, Tan J, Yang D, Jia X, Wang L. Biodegradable nanoparticles of polyacrylic acid stabilized amorphous CaCO3 for tunable pH responsive drug delivery and enhanced tumor inhibition. Adv Funct Materials. 2019;29(24):1808146. doi: 10.1002/adfm.201808146.

Dong Z, Feng L, Hao Y, Li Q, Chen M, Yang Z. Synthesis of CaCO3 based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem. 2020;6(6):1495-7. doi: 10.1016/j.chempr.2020.05.008.

Bahrom H, Goncharenko AA, Fatkhutdinova LI, Peltek OO, Muslimov AR, Koval OY. Controllable synthesis of calcium carbonate with different geometry: comprehensive analysis of particle formation cellular uptake and biocompatibility. ACS Sustainable Chem Eng. 2019;7(23):19142-56. doi: 10.1021/acssuschemeng.9b05128.

Parakhonskiy BV, Yashchenok AM, Konrad M, Skirtach AG. Colloidal micro and nanoparticles as templates for polyelectrolyte multilayer capsules. Adv Colloid Interface Sci. 2014;207:253-64. doi: 10.1016/j.cis.2014.01.022, PMID 24594104.

Binevski PV, Balabushevich NG, Uvarova VI, Vikulina AS, Volodkin DJ. Bio-friendly encapsulation of superoxide dismutase into vaterite CaCO3 crystals enzyme activity release mechanism and perspectives for ophthalmology. Colloids Surf B Biointerfaces. 2019;181:437-49. doi: 10.1016/j.colsurfb.2019.05.077, PMID 31176116.

Luo R, Venkatraman SS, Neu B. Layer-by-layer polyelectrolyte polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs. Biomacromolecules. 2013;14(7):2262-71. doi: 10.1021/bm4003915, PMID 23692337.

Chesneau C, Sow AO, Hamachi F, Michely L, Hamadi S, Pires R. Cyclodextrin-calcium carbonate micro to nanoparticles: targeting vaterite form and hydrophobic drug loading release. Pharmaceutics. 2023;15(2):15020653. doi: 10.3390/pharmaceutics15020653, PMID 36839976.

Yu J, Wang L, Xie X, Zhu W, Lei Z, Lv L. Multifunctional nanoparticles codelivering doxorubicin and amorphous calcium carbonate preloaded with indocyanine green for enhanced chemo photothermal cancer therapy. Int J Nanomedicine. 2023;18:323-37. doi: 10.2147/IJN.S394896, PMID 36700147.

Kim MK, Lee JA, Jo MR, Kim MK, Kim HM, Oh JM. Cytotoxicity uptake behaviors and oral absorption of food grade calcium carbonate nanomaterials. Nanomaterials (Basel). 2015;5(4):1938-54. doi: 10.3390/nano5041938, PMID 28347104.

Elisha IL, Dzoyem JP, McGaw LJ, Botha FS, Eloff JN. The anti-arthritic anti-inflammatory antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement Altern Med. 2016;16(1):307. doi: 10.1186/s12906-016-1301-z, PMID 27554099.

Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem. 2001;49(7):3420-4. doi: 10.1021/jf0100907, PMID 11453785.

Naka K, Chujo Y. Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chem Mater. 2001;13(10):3245-59. doi: 10.1021/cm011035g.

Andreassen JP. Formation mechanism and morphology in precipitation of vaterite nano aggregation or crystal growth. J Cryst Growth. 2005;274(1-2):256-64. doi: 10.1016/j.jcrysgro.2004.09.090.

Marmo VL, Ambrosio JA, Goncalves EP, Raniero LJ, Beltrame Junior M, Pinto JG. Vaterite microparticle loaded methylene blue for photodynamic activity in macrophages infected with leishmania braziliensis. Photochem Photobiol Sci. 2023;22(8):1977-89. doi: 10.1007/s43630-023-00426-0, PMID 37115408.

Brecevic L, Nielsen AE. Solubility of amorphous calcium carbonate. J Cryst Growth. 1989;98(3):504-10. doi: 10.1016/0022-0248(89)90168-1.

Cavanaugh J, Whittaker ML, Joester D. Crystallization kinetics of amorphous calcium carbonate in confinement. Chem Sci. 2019;10(19):5039-43. doi: 10.1039/C8SC05634J, PMID 31183054.

Parakhonskiy BV, Haase A, Antolini R. Sub micrometer vaterite containers: synthesis substance loading and release. Angew Chem Int Ed Engl. 2012;51(5):1195-7. doi: 10.1002/anie.201104316, PMID 22375283.

Chang Y, Han H, Liu T, Yuan S, Chen S, Guo Y. Cell tailored calcium carbonate particles with different crystal forms from nanoparticle to nano microsphere. RSC Adv. 2020;10(70):43233-41. doi: 10.1039/D0RA07393H, PMID 35514929.

Feoktistova NA, Balabushevich NG, Skirtach AG, Volodkin D, Vikulina AS. Inter-protein interactions govern protein loading into porous vaterite CaCO3 crystals. Phys Chem Chem Phys. 2020;22(17):9713-22. doi: 10.1039/D0CP00404A, PMID 32329476.

Mo Y, Lim LY. Paclitaxel loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Release. 2005;108(2-3):244-62. doi: 10.1016/j.jconrel.2005.08.013, PMID 16213056.

Arvishi B, Manoochehri S, Kamalinia G, Samadi N, Amini M, Mostafavi SH. Preparation and antibacterial activity evaluation of 18-β-glycyrrhetinic acid loaded PLGA nanoparticles. Iran J Pharm Res. 2015;14(2):373-83. PMID 25901144.

Carpenter DK. Dynamic light scattering with applications to chemistry biology and physics (Berne Bruce J Pecora Robert). J Chem Educ. 1977;54(10):A430. doi: 10.1021/ed054pA430.1.

Ross Murphy SB. Dynamic light scattering. BJ Berne, R Pecora John Wiley New York; 1976. p. 376. doi: 10.1002/pi.4980090216.

Trushina DB, Bukreeva TV, Kovalchuk MV, Antipina MN. CaCO₃ vaterite microparticles for biomedical and personal care applications. Mater Sci Eng C Mater Biol Appl. 2014;45:644-58. doi: 10.1016/j.msec.2014.04.050, PMID 25491874.

Okeke ES, Enechi OC, Nkwoemeka NE. PoTsIE-CoAiH, disease membrane stabilization, albumin denaturation, protease inhibition and antioxidant activity as possible mechanisms for the anti-inflammatory effects of flavonoid-rich extract of peltophorum pterocarpum (FREPP) stem-bark. In: Proceedings of the 1st International e-conference on antioxidants in health and disease; 2020.

Ge X, Cao Z, Chu L. The antioxidant effect of the metal and metal oxide nanoparticles. Antioxidants (Basel). 2022;11(4):791. doi: 10.3390/antiox11040791, PMID 35453476.

Gulcin I, Alwasel SH. DPPH radical scavenging assay. Processes. 2023;11(8):2248. doi: 10.3390/pr11082248.

Zulham WYW, Wardhana YW, Subarnas A, Susilawati Y, Chaerunisaa AY. Microencapsulation of schleichera oleosa L. leaf extract in maintaining their biological activity: antioxidant and hepatoprotective. Int J App Pharm. 2023;15(6):326-33. doi: 10.22159/ijap.2023v15i6.48960.

Aulifa DL, Wibowo DP, Safitri N, Budiman A. Formulation of effervescent granules from red ginger [Zingiberis officinale Roscoe Var. rubrum]. Int J App Pharm. 2022;14(1):112-5. doi: 10.22159/ijap.2022v14i1.43377.

Valdi DS, Florentine NF, Arlette DZ, Landry KG, Rosette N, Dimitri NT. Investigating the antibacterial antioxidant and anti-inflammatory activities of aqueous and hydroethanolic extracts of ocimum basilicum and ocimum gratissimum on some germs responsible for aerobic vaginitis. Int J Pharm Pharm Sci. 2023;15(3):21-8. doi: 10.22159/ijpps.2023v15i3.47116.

Tahareen S, Shwetha R, Myrene R. Potential antioxidant anti-inflammatory and antibacterial evaluation of extracts of leucas aspera using in vitro models. Int J Pharm Pharm Sci. 2016;8(12):292-7. doi: 10.22159/ijpps.2016v8i11.13711.

Jose D, Kumudha D. Evaluation of therapeutic activities of synthesized iron oxide nanoparticles. Afr J Biol Sci. 2024;6(5):1515-27. doi: 10.33472/AFJBS.6.5.2024.

Published

07-09-2024

How to Cite

JOSE, D., & KUMUDHA, D. (2024). SYNTHESIS, CHARACTERIZATION AND IN VITRO EVALUATION OF VATERITE MICROPARTICLES. International Journal of Applied Pharmaceutics, 16(5), 252–257. https://doi.org/10.22159/ijap.2024v16i5.51569

Issue

Section

Original Article(s)