AN IN SILICO AND IN VITRO EVALUATION OF CYTOTOXICITY, APOPTOTIC ACTIVITY AND GENE EXPRESSION MODULATION OF SARSASAPOGENIN IN HUMAN COLORECTAL CANCER CELL LINE HT-29

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50855

Keywords:

Sarsasapogenin, HT 29 cells, In silico, Apoptosis

Abstract

Objective: Search for natural drugs against Colo Rectal Cancer (CRC) is ever-growing. Sarsasapogenin is a steroidal sapogenin known for various biological activities. The current study intends to investigate it’s anticancer activity in vitro against the Human Adenocarcinoma CRC cell line (HT-29). Additionally, the in silico interaction between sarsasapogenin and selected anticancer drug-protein targets was investigated.

Methods: To evaluate cell viability, HT-29 cells were subjected to several concentrations of sarsasapogenin. Flow cytometry was used to study apoptosis. The expression of the genes Epidermal Growth Factor Receptor Tyrosine Kinase (EGFR-TK) and Kirsten Rat Sarcoma oncogene homolog (KRAS) was elucidated by real-time Polymerase Chain reaction. Molecular docking was used in conjunction with Molecular Dynamics (MD) simulation to comprehend the Sarsasapogenin’s interaction with EGFR-TK and KRAS.

Results: Sarsasapogenin affected the viability of HT-29 cells dose-dependently. In HT-29 cells, sarsasapogenin treatment decreased the levels of KRAS and EGFR and caused apoptosis. In silico study demonstrated the interaction of sarsasapogenin in the Adenosine triphosphate binding site of EGFR-TK and the switch I/switch II site of KRAS. Post-MD analysis determined the stable binding of sarsasapogenin with these proteins. The binding energy with EGFR-TK and KRAS was found to be-46.0 ± 1.5 kcal/mol and-28.8 ± 6.3kcal/mol.

Conclusion: Altogether, Sarsasapogenin, through modulation of EGFR and KRAS has shown promising anticancer effect against HT-29 cells.

Downloads

Download data is not yet available.

References

Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023 May-Jun;73(3):233-54. doi: 10.3322/caac.21772, PMID 36856579.

Arnold CN, Goel A, Blum HE, Boland CR. Molecular pathogenesis of colorectal cancer: implications for molecular diagnosis. Cancer. 2005 Nov 15;104(10):2035-47. doi: 10.1002/cncr.21462, PMID 16206296.

Elarabany N, Hamad A, Alzamel NM. Antitumor and phytochemical properties of Ferula assa-foetida l. Oleo-gum-resin against HT-29 colorectal cancer cells in vitro and in a xenograft mouse model. Molecules. 2023 Dec 8;28(24):8012. doi: 10.3390/molecules28248012, PMID 38138502.

Gavrilas LI, Cruceriu D, Mocan A, Loghin F, Miere D, Balacescu O. Plant-derived bioactive compounds in colorectal cancer: insights from combined regimens with conventional chemotherapy to overcome drug-resistance. Biomedicines. 2022 Aug;10(8):1948. doi: 10.3390/biomedicines10081948, PMID 36009495.

Wang M, liu X, Chen T, Cheng X, Xiao H, Meng X. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol. 2022 Sep 8;12:956793. doi: 10.3389/fonc.2022.956793, PMID 36158694.

Martinelli E, Ciardiello D, Martini G, Troiani T, Cardone C, Vitiello PP. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives. Ann Oncol. 2020 Jan;31(1):30-40. doi: 10.1016/j.annonc.2019.10.007, PMID 31912793.

Spano JP, Fagard R, Soria JC, Rixe O, Khayat D, Milano G. Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol. 2005 Feb;16(2):189-94. doi: 10.1093/annonc/mdi057, PMID 15668269.

McKay JA, Murray LJ, Curran S, Ross VG, Clark C, Murray GI. Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur J Cancer. 2002 Nov;38(17):2258-64. doi: 10.1016/s0959-8049(02)00234-4, PMID 12441262.

EGFR Antagonists in Cancer Treatment. N Engl J Med. 2009;360(15):1579. doi: 10.1056/NEJMx090011.

Hirsh V. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr Oncol. 2011 Jun;18(3):126-38. doi: 10.3747/co.v18i3.877, PMID 21655159.

Van Cutsem E, Cervantes A, Nordlinger B, Arnold D, ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014 Sep;25 Suppl 3:iii1-9. doi: 10.1093/annonc/mdu260.

liu YC, Tsai JJ, Weng YS, Hsu FT. Regorafenib suppresses epidermal growth factor receptor signaling-modulated progression of colorectal cancer. Biomed Pharmacother. 2020 Aug;128:110319. doi: 10.1016/j.biopha.2020.110319, PMID 32502841.

liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: their relevance for cancer therapy. Pharmacol Res. 2020 Nov;161:105164. doi: 10.1016/j.phrs.2020.105164, PMID 32846211.

Karapetis CS, Khambata Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008 Oct 23;359(17):1757-65. doi: 10.1056/NEJMoa0804385, PMID 18946061.

Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci USA. 2019 Aug 6;116(32):15823-9. doi: 10.1073/pnas.1904529116, PMID 31332011.

Baldelli E, El Gazzah E, Moran JC, Hodge KA, Manojlovic Z, Bassiouni R. Wild-type KRAS allele effects on druggable targets in KRAS mutant lung adenocarcinomas. Genes (Basel). 2021 Sep 11;12(9):1402. doi: 10.3390/genes12091402, PMID 34573384.

Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, li J, lv Q, Gondi S. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell. 2018 Feb 8;172(4):857-68. doi: 10.1016/j.cell.2017.12.020, PMID: 29336889.

Akash S, Bayıl I, Mahmood S, Mukerjee N, Mili TA, Dhama K. Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: a new cutting-edge computational approach. Heliyon. 2023 Oct 5;9(10):e20670. doi: 10.1016/j.heliyon.2023.e20670, PMID 37876433.

Choi YH. Reduction of high glucose-induced oxidative injury in human retinal pigment epithelial cells by sarsasapogenin through inhibition of ROS generation and inactivation of NF-κB/NLRP3 inflammasome pathway. Genes Genomics. 2023 Sep;45(9):1153-63. doi: 10.1007/s13258-023-01417-2, PMID 37354257.

Dai Y, liu P, Wen W, Li P, Yang C, Wang P. Sarsasapogenin, a principal active component absorbed into blood of total saponins of Anemarrhena, attenuates proliferation and invasion in rheumatoid arthritis fibroblast-like synoviocytes through downregulating PKM2 inhibited pathological glycolysis. Phytother Res. 2023 May;37(5):1951-67. doi: 10.1002/ptr.7712, PMID 36631974.

Kong L, liu Y, Zhang YM, Li Y, Gou LS, Ma TF. Sarsasapogenin ameliorates diabetes-associated memory impairment and neuroinflammation through down-regulation of PAR-1 receptor. Phytother Res. 2021 Jun;35(6):3167-80. doi: 10.1002/ptr.7005, PMID 33885189.

Peng J, Zhao K, Zhu J, Wang Y, Sun P, Yang Q. Sarsasapogenin suppresses RANKL-induced osteoclastogenesis in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Drug Des Devel Ther. 2020;14:3435-47. doi: 10.2147/DDDT.S256867, PMID 32943842.

Zhang YM, Zheng T, Huang TT, Gu PP, Gou LS, Ma TF. Sarsasapogenin attenuates alzheimer-like encephalopathy in diabetes. Phytomedicine. 2021;91:153686. doi: 10.1016/j.phymed.2021.153686, PMID 34333330.

li XZ, Jiang H, Xu l, liu YQ, Tang JW, Shi JS, Yu XJ. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway. Biochem Pharmacol. 2021 Oct;192:114675. doi: 10.1016/j.bcp.2021.114675, PMID 34252407.

Ni Y, Gong XG, Lu M, Chen HM, Wang Y. Mitochondrial ROS burst as an early sign in sarsasapogenin-induced apoptosis in HepG2 cells. Cell Biol Int. 2008;32(3):337-43. doi: 10.1016/j.cellbi.2007.12.004, PMID 18262806.

Shen S, Zhang Y, Zhang R, Gong X. Sarsasapogenin induces apoptosis via the reactive oxygen species-mediated mitochondrial pathway and ER stress pathway in HeLa cells. Biochem Biophys Res Commun. 2013 Nov 15;441(2):519-24. doi: 10.1016/j.bbrc.2013.10.101, PMID 24383086.

Wang W, Zhang Y, Yao G, Wang W, Shang X, Zhang Y. Synthesis of new sarsasapogenin derivatives with antiproliferative and apoptotic effects in MCF-7 cells. Steroids. 2018 Mar;131:23-31. doi: 10.1016/j.steroids.2018.01.001, PMID 29337037.

Yin Y, Zhao XC, Wang SJ, Gao PY, Li LZ, Ikejima T. Synthesis and biological evaluation of novel sarsasapogenin derivatives as potential anti-tumor agents. Steroids Steroids. 2015;93:25-31. doi: 10.1016/j.steroids.2014.09.007, PMID 25456170.

Nithya TG, Sumalatha D. Evaluation of in vitro antioxidant and anticancer activity of coriandrum sativum against human colon cancer HT-29 cell lines. Int J Pharm Pharm Sci. 2014;6(2):421-4.

Roihatul Mutiah S, Widyawaruyanti A. Cytotoxic effect of crude extract and fraction from calotropis gigantea leaves on human colon cancer widr cell lines. Int J Pharm Pharm Sci. 2017;9(1):83-6.

Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994;84(5):1415-20, PMID 8068938.

Gundogdu G, Dodurga Y, Elmas L, Tasci SY, Karaoglan ES. Investigation of the anticancer mechanism of isoorientin isolated from eremurus spectabilis leaves via cell cycle pathways in HT-29 human colorectal adenocarcinoma cells. Eurasian J Med. 2018 Oct;50(3):168-72. doi: 10.5152/eurasianjmed.2018.17403, PMID 30515037.

Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002 Nov 29;277(48):46265-72. doi: 10.1074/jbc.M207135200, PMID 12196540.

Kim D, Herdeis L, Rudolph D, Zhao Y, Bottcher J, Vides A. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature. 2023 Jul;619(7968):160-6. doi: 10.1038/s41586-023-06123-3, PMID 37258666.

Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, lang PT. DOCK 6: Impact of new features and current docking performance. J Comput Chem. 2015 Jun 5;36(15):1132-56. doi: 10.1002/jcc.23905, PMID 25914306.

Ashraf N, Asari A, Yousaf N, Ahmad M, Ahmed M, Faisal A. Combined 3D-QSAR, molecular docking and dynamics simulations studies to model and design TTK inhibitors. Front Chem. 2022 Nov 2;10:1003816. doi: 10.3389/fchem.2022.1003816, PMID 36405310.

Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p, PMID 26583988.

Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011 Oct;79(10):2794-812. doi: 10.1002/prot.23106, PMID 21905107.

Wang E, Sun H, Wang J, Wang Z, liu H, Zhang JZ. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. 2019 Aug 28;119(16):9478-508. doi: 10.1021/acs.chemrev.9b00055, PMID 31244000.

Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936, PMID 25835573.

Bao W, Pan H, Lu M, Ni Y, Zhang R, Gong X. The apoptotic effect of sarsasapogenin from anemarrhena asphodeloides on HepG2 human hepatoma cells. Cell Biol Int. 2007;31(9):887-92. doi: 10.1016/j.cellbi.2007.02.001, PMID 17400003.

Li H, Zhu F, Boardman LA, Wang L, Oi N, Liu K. Aspirin prevents colorectal cancer by normalizing EGFR expression. E Biomedicine. 2015;2(5):447-55. doi: 10.1016/j.ebiom.2015.03.019, PMID 26097892.

Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res. 2005;11(7):2735-46. doi: 10.1158/1078-0432.CCR-04-2014, PMID 15814656.

Su YS, Kuo MZ, Kuo YT, Huang SW, Lee CJ, Su ZY. Diterpenoid anthraquinones as chemopreventive agents altered microRNA and transcriptome expressions in cancer cells. Biomed Pharmacother. 2021;136:111260. doi: 10.1016/j.biopha.2021.111260, PMID 33465676.

Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene. 2006 Jan 12;25(2):278-87. doi: 10.1038/sj.onc.1209019, PMID 16170359.

Horng CT, Yang JS, Chiang JH, Lu CC, Lee CF, Chiang NN. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells. Mol Med Rep. 2016 Jan;13(1):1003-9. doi: 10.3892/mmr.2015.4635, PMID 26648313.

Xavier CP, lima CF, Preto A, Seruca R, Fernandes Ferreira M, Pereira Wilson C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett. 2009 Aug 28;281(2):162-70. doi: 10.1016/j.canlet.2009.02.041, PMID 19344998.

Tahir AA, Sani NF, Murad NA, Makpol S, Ngah WZ, Yusof YA. Combined ginger extract and Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutr J. 2015 Apr 1;14:31. doi: 10.1186/s12937-015-0015-2, PMID 25889965.

Ghodousi Dehnavi E, Hosseini RH, Arjmand M, Nasri S, Zamani Z. A metabolomic investigation of eugenol on colorectal cancer cell line HT-29 by modifying the expression of APC, p53, and KRAS genes. Evid Based Complement Alternat Med. 2021 Nov 18;2021:1448206. doi: 10.1155/2021/1448206, PMID 34840582.

Zhao Z, Xie L, Bourne PE. Structural insights into characterizing binding sites in epidermal growth factor receptor kinase mutants. J Chem Inf Model. 2022;62(1):223-4. doi: 10.1021/acs.jcim.1c01357, PMID 34929085.

Zhao J, Zhang T, liang Y, Zou H, Zhang J. Inhibitory activities of 20(R, S)-protopanaxatriol against epidermal growth factor receptor tyrosine kinase. Food Chem Toxicol. 2021 Sep;155:112411. doi: 10.1016/j.fct.2021.112411, PMID 34271119.

liang Y, Zhao J, Zou H, Zhang J, Zhang T. Identification of 20(S)-ginsenoside Rh2 as a potential EGFR tyrosine kinase inhibitor. Oxid Med Cell Longev. 2022 Jan 24;2022:6119737. doi: 10.1155/2022/6119737, PMID 35111279.

Gasper R, Wittinghofer F. The ras switch in structural and historical perspective. Biol Chem. 2019 Dec 18;401(1):143-63. doi: 10.1515/hsz-2019-0330, PMID 31600136.

Bhadhadhara K, Jani V, Koulgi S, Sonavane U, Joshi R. Studying early structural changes in SOS1 mediated KRAS activation mechanism. Curr Res Struct Biol. 2024;7:100115. doi: 10.1016/j.crstbi.2023.100115, PMID 38188543.

Haza KZ, Martin HL, Rao A, Turner AL, Saunders SE, Petersen B. RAS-inhibiting biologics identify and probe druggable pockets including an SII-α3 allosteric site. Nat Commun. 2021 Jun 30;12(1):4045. doi: 10.1038/s41467-021-24316-0, PMID 34193876.

Published

07-07-2024

How to Cite

AHAMED, T., RAMASAMY, K., & S., R. (2024). AN IN SILICO AND IN VITRO EVALUATION OF CYTOTOXICITY, APOPTOTIC ACTIVITY AND GENE EXPRESSION MODULATION OF SARSASAPOGENIN IN HUMAN COLORECTAL CANCER CELL LINE HT-29. International Journal of Applied Pharmaceutics, 16(4), 84–91. https://doi.org/10.22159/ijap.2024v16i4.50855

Issue

Section

Original Article(s)