CURRENT PERSPECTIVES ON USING NANOPARTICLES FOR DIABETES MANAGEMENT

Authors

  • NITESH KUMAR YADAV Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh-201306, India https://orcid.org/0009-0007-3672-1247
  • RUPA MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh-201306, India
  • ANJNA RANI Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh-201306, India
  • ARVIND KUMAR Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh-201306, India

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51084

Keywords:

Diabetes mellitus, Polymeric nanoparticles, Lipid-based nanoparticles, Inorganic nanoparticles

Abstract

If ignored, Diabetes Mellitus (DM), a chronic metabolic disease marked by high levels of blood glucose, can have serious negative effects on one's health. The efficacy, safety, and patient compliance of traditional treatment approaches, like insulin injections and oral medications, are frequently hampered. Nanoparticle-based methods have shown promise in recent years as improved diabetes management techniques. Enhanced bioavailability, prolonged therapeutic effects, and targeted drug delivery are just a few of the special benefits that come with using nanoparticles. An overview of current perspectives on using nanoparticles for diabetes control is given in this review. The properties, production processes, and potential uses of several types of nanoparticles, such as polymeric, lipid-based, and inorganic nanoparticles, in the management of diabetes are covered. These nanoparticles allow for the precise delivery of therapeutic agents, such as insulin or anti-diabetic medications, to specific target tissues, like the liver or pancreas. It discusses how inorganic nanoparticles, Polymeric Nanoparticles (PNPs), and Lipid-Based Nanoparticles (LNPs) contribute to improved drug solubility, targeted delivery, and controlled release. Several methods for synthesizing polymeric nanoparticles are described. It also discusses the potential anti-inflammatory and antioxidant properties of some nanoparticles and how crucial they are to lowering diabetes-related issues. By incorporating the most recent research, this review offers a comprehensive summary of the current developments in the use of nanoparticles for diabetes control, paving the way for enhanced therapeutic outcomes and tailored interventions.

Downloads

Download data is not yet available.

References

Deepthi B, Sowjanya K, Lidiya B, Bhargavi R, Babu P. A modern review of diabetes mellitus: an annihilatory metabolic disorder. J In Silico In vitro Pharmacol. 2017;3(1). doi: 10.21767/2469-6692.100014.

Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(4):174-88. doi: 10.4103/ajm.ajm_53_20, PMID 33437689.

Mekala KC, Bertoni AG. Epidemiology of diabetes mellitus. Transplant Bioeng Regen Endocr Pancreas. 2020:49-58.

Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev. 2002;18Suppl 2:S5-9. doi: 10.1002/dmrr.254, PMID 11921432.

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi: 10.1038/nrendo.2017.151, PMID 29219149.

Diamond Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990-1999. Diabet Med. 2006;23(8):857-66. doi: 10.1111/j.1464-5491.2006.01925.x, PMID 16911623.

Khan MA, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107-11. doi: 10.2991/jegh.k.191028.001, PMID 32175717.

Gourgari E, Wilhelm EE, Hassanzadeh H, Aroda VR, Shoulson I. A comprehensive review of the FDA-approved labels of diabetes drugs: indications, safety, and emerging cardiovascular safety data. J Diabetes Complications. 2017;31(12):1719-27. doi: 10.1016/j.jdiacomp.2017.08.005, PMID 28939018.

Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini-review. Curr Diabetes Rev. 2017;13(1):3-10. doi: 10.2174/1573399812666151016101622, PMID 26472574.

Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S. Global and regional estimates and projections of diabetes-related health expenditure: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2020;162:108072. doi: 10.1016/j.diabres.2020.108072, PMID 32061820.

Gupta R. Diabetes treatment by nanotechnology. J Biotechnol Biomater. 2017;07(3):268. doi: 10.4172/2155-952X.1000268.

Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev. 2007;59(15):1521-46. doi: 10.1016/j.addr.2007.08.019, PMID 17881081.

Debele TA, Park Y. Application of nanoparticles: diagnosis, therapeutics, and delivery of insulin/anti-diabetic drugs to enhance the therapeutic efficacy of diabetes mellitus. Life (Basel). 2022;12(12):2078. doi: 10.3390/life12122078, PMID 36556443.

Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kaushik A, Kim KH. Antidiabetic activity enhancement in streptozotocin+nicotinamide-induced diabetic rats through combinational polymeric nanoformulation. Int J Nanomedicine. 2019;14:4383-95. doi: 10.2147/IJN.S205319, PMID 31354267.

Yuan W, Shen T, Wang J, Zou H. Formation–dissociation of glucose, pH and redox triply responsive micelles and controlled release of insulin. Polym Chem. 2014;5(13):3968-71. doi: 10.1039/c4py00463a.

Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater. 2022;15:392-408. doi: 10.1016/j.bioactmat.2022.02.025, PMID 35386357.

Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther. 2024;9(1):1. doi: 10.1038/s41392-023-01668-1, PMID 38161204.

Radhakrishnan A, Kuppusamy G, Subramaniam T. Personalized nanotools for the treatment of metabolic disorders. Recent Innov Chem Eng. 2022;15(1):3-13. doi: 10.2174/2405520414666210308154038.

Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Delivery of insulin via skin route for the management of diabetes mellitus: approaches for breaching the obstacles. Pharmaceutics. 2021;13(1):100. doi: 10.3390/pharmaceutics13010100, PMID 33466845.

Pandey M, Choudhury H, Yi CX, Mun CW, Phing GK, Rou GX. Recent updates on novel approaches in insulin drug delivery: a review of challenges and pharmaceutical implications. Curr Drug Targets. 2018;19(15):1782-800. doi: 10.2174/1389450119666180523092100, PMID 29792143.

Woldu MA, Lenjisa J. Nanoparticles and the new era in diabetes management. Int J Basic Clin Pharmacol. 2014;3(2):277-84. doi: 10.5455/2319-2003.ijbcp20140405.

Fathi Achachelouei M, Knopf Marques H, Ribeiro da Silva CE, Barthes J, Bat E, Tezcaner A. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019;7:113. doi: 10.3389/fbioe.2019.00113, PMID 31179276.

Karuppusamy C, Venkatesan P. Role of nanoparticles in drug delivery system: a comprehensive review. J Pharm Sci Res. 2017;9(3):318.

Nasir A, Kausar A, Younus A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym Plast Technol Eng. 2015;54(4):325-41. doi: 10.1080/03602559.2014.958780.

El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1-2):675-91. doi: 10.1016/j.ijpharm.2017.06.052, PMID 28629982.

Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5(3):16-23.

Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5(4):447-51. doi: 10.1016/s1367-5931(00)00227-1, PMID 11470609.

Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):271-99. doi: 10.1002/wnan.1364, PMID 26314803.

Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164-73. doi: 10.1016/j.biomaterials.2011.03.056, PMID 21641031.

Sonaje K, Chuang EY, Lin KJ, Yen TC, Su FY, Tseng MT. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm. 2012;9(5):1271-9. doi: 10.1021/mp200572t, PMID 22462641.

Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267-85. doi: 10.1016/s0169-409x(97)00124-5, PMID 10837629.

Vasilakes AL, Dziubla TD, Wattamwar PP. Polymeric nanoparticles. Eng Polym Syst Improv Drug Deliv. 2013:117-61.

Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci. 2016;60:86-128. doi: 10.1016/j.progpolymsci.2016.05.005.

Muhamad II, Selvakumaran S, Lazim NAM. Designing polymeric nanoparticles for targeted drug delivery system. Nanomed. 2014;287:287.

Rani S, Sharma AK, Khan I, Gothwal A, Chaudhary S, Gupta U. Polymeric nanoparticles in targeting and delivery of drugs. Nanotechnol-Based Approaches Target Deliv Drugs Genes. 2017:223-55.

Mendoza Munoz N, Alcala Alcala S, Quintanar Guerrero D. Preparation of polymer nanoparticles by the emulsification-solvent evaporation method: from Vanderhoff’s pioneer approach to recent adaptations. Polym Nanoparticles Nanomedicines; 2016. p. 87-121.

Rauta PR, Das NM, Nayak D, Ashe S, Nayak B. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery. IET Nanobiotechnology. 2016;10(4):254-61. doi: 10.1049/iet-nbt.2015.0021, PMID 27463797.

Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg AP. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind Eng Chem Res. 2020;59(9):4134-49. doi: 10.1021/acs.iecr.9b04747.

Wang Y, Li P, Truong Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel). 2016;6(2):26. doi: 10.3390/nano6020026, PMID 28344283.

Wu L, Liu M, Shan W, Zhu X, Li L, Zhang Z. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release. 2017;262:273-83. doi: 10.1016/j.jconrel.2017.07.045, PMID 28774842.

Mohanty D, Gilani SJ, Zafar A, Imam SS, Kumar LA, Ahmed MM. Formulation and optimization of alogliptin-loaded polymeric nanoparticles: in vitro to in vivo assessment. Molecules. 2022;27(14):4470. doi: 10.3390/molecules27144470, PMID 35889343.

Podichety N, Jyothi P, Pradeep K, Maddali RK. Formulation and evaluation of empagliflozin drug-loaded polymeric nanoparticles for the treatment of type 2 diabetes mellitus (T2DM). Curr Trends Biotechnol Pharm. 2022;16(3):308-15.

Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci. 2017;106:220-30. doi: 10.1016/j.ejps.2017.05.068, PMID 28595874.

Jahangir MA, Khan R, Sarim Imam S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced antidiabetic performance. Artif Cells Nanomed Biotechnol. 2018;46Suppl 1:66-78. doi: 10.1080/21691401.2017.1411933, PMID 29226729.

Kaleemuddin M, Srinivas P. Lyophilized oral sustained release polymeric nanoparticles of nateglinide. AAPS PharmSciTech. 2013;14(1):78-85. doi: 10.1208/s12249-012-9887-z, PMID 23229379.

Abdel Moneim A, El-Shahawy A, Yousef AI, Abd El-Twab SM, Elden ZE, Taha M. Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: in silico, in vitro and in vivo approaches. Int J Biol Macromol. 2020;154:1496-504. doi: 10.1016/j.ijbiomac.2019.11.031, PMID 31758992.

Al Rashid H. Preparation and characterization of PLGA loaded nanoparticles obtained from D. Melanoxylon Roxb. leaves for their antiproliferative and antidiabetic activity. Int J Green Pharm. 2017;11(03):438-47.

Sharma DK, Pattnaik G, Behera A. Development and in vitro, in vivo evaluation of pioglitazone-loaded polymeric nanoparticles using central composite design surface response methodology. Open Nano. 2023;11:100141. doi: 10.1016/j.onano.2023.100141.

Zhang P, Zhang Y, Liu CG. Polymeric nanoparticles based on carboxymethyl chitosan in combination with painless microneedle therapy systems for enhancing transdermal insulin delivery. RSC Adv. 2020;10(41):24319-29. doi: 10.1039/d0ra04460a, PMID 35516174.

Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol. 2019;123:968-78. doi: 10.1016/j.ijbiomac.2018.11.147, PMID 30448487.

Chang R, Li M, Ge S, Yang J, Sun Q, Xiong L. Glucose-responsive biopolymer nanoparticles prepared by co-assembly of concanavalin a and amylopectin for insulin delivery. Ind Crops Prod. 2018;112:98-104. doi: 10.1016/j.indcrop.2017.11.017.

Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Lipid-based nanoparticles for drug delivery systems. Char Biol Nanomater Drug Deliv. 2019:47-76.

Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790-8. doi: 10.1248/bpb.29.1790, PMID 16946487.

Salunkhe SA, Chitkara D, Mahato RI, Mittal A. Lipid-based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Adv Drug Deliv Rev. 2021;173:394-415. doi: 10.1016/j.addr.2021.04.003, PMID 33831474.

Samed N, Sharma V, Sundaramurthy A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation. Appl Surf Sci. 2018;449:567-73. doi: 10.1016/j.apsusc.2017.11.055.

Nasr M, Almawash S, Al Saqr A, Bazeed AY, Saber S, Elagamy HI. Bioavailability and antidiabetic activity of gliclazide-loaded cubosomal nanoparticles. Pharmaceuticals (Basel). 2021;14(8):786. doi: 10.3390/ph14080786, PMID 34451883.

Garcia Pinel B, Porras Alcala C, Ortega Rodriguez A, Sarabia F, Prados J, Melguizo C. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials. 2019;9(4):638.

Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019;24(23):4209. doi: 10.3390/molecules24234209, PMID 31756981.

Patidar A, Thakur DS, Kumar P, Verma J. A review on novel lipid-based nanocarriers. Int J Pharm Pharm Sci. 2010;2(4):30-5.

Uner M, Yener GJ. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289-300. PMID 18019829.

Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie. 2006;61(5):375-86. PMID 16724531.

Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol. 2019;51:255-67. doi: 10.1016/j.jddst.2019.02.017.

Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ. Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Curr Drug Deliv. 2008;5(4):324-31. doi: 10.2174/156720108785915087, PMID 18855604.

Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci. 2019;3(1):1-9. doi: 10.21608/jabps.2019.16887.1057.

Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014;205:187-206. doi: 10.1016/j.cis.2013.11.018, PMID 24369107.

Khoee S, Yaghoobian M. Niosomes: a novel approach in modern drug delivery systems. Nanostruct Drug Deliv. 2017:207-37.

He H, Lu Y, Qi J, Zhao W, Dong X, Wu W. Biomimetic thiamine and niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharm Sin B. 2018;8(1):97-105. doi: 10.1016/j.apsb.2017.11.007, PMID 29872626.

Cho EY, Ryu JY, Lee HA, Hong SH, Park HS, Hong KS. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nanobiotechnology. 2019;17(1):19. doi: 10.1186/s12951-019-0452-8, PMID 30696428.

Nazief AM, Hassaan PS, Khalifa HM, Sokar MS, El-Kamel AH. Lipid-based gliclazide nanoparticles for treatment of diabetes: formulation, pharmacokinetics, pharmacodynamics and subacute toxicity study. Int J Nanomedicine. 2020;15:1129-48. doi: 10.2147/IJN.S235290, PMID 32110012.

Kenechukwu FC, Nnamani DO, Duhu JC, Nmesirionye BU, Momoh MA, Akpa PA. Potential enhancement of metformin hydrochloride in solidified reverse micellar solution-based pegylated lipid nanoparticles targeting therapeutic efficacy in diabetes treatment. Heliyon. 2022;8(3):e09099. doi: 10.1016/j.heliyon.2022.e09099, PMID 35309393.

Aldawsari HM, Hanafy A, Labib GS, Badr JM. Antihyperglycemic activities of extracts of the mistletoes plicosepalus acaciae and P. curviflorus in comparison to their solid lipid nanoparticle suspension formulations. Z Naturforsch C J Biosci. 2014;69(9-10):391-8. doi: 10.5560/znc.2014-0047, PMID 25711040.

Salvi N, Choudhary GP. Development and characterization of solid lipid nanoparticles containing Murraya koenigii leaves extract for management of diabetes mellitus. Asian J Pharm Pharmacol. 2019;5(5):1048-55. doi: 10.31024/ajpp.2019.5.5.26.

Bharti Sharma JB, Bhatt S, Tiwari A, Tiwari V, Kumar M, Verma R. Statistical optimization of tetrahydro curcumin loaded solid lipid nanoparticles using box behnken design in the management of streptozotocin-induced diabetes mellitus. Saudi Pharm J. 2023;31(9):101727. doi: 10.1016/j.jsps.2023.101727, PMID 37638219.

Murakami T, Tsuchida K. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev Med Chem. 2008;8(2):175-83. doi: 10.2174/138955708783498078, PMID 18289101.

Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today. 2020;35:100972. doi: 10.1016/j.nantod.2020.100972.

Paul W, Sharma CP. Inorganic nanoparticles for targeted drug delivery. Biointegration Med Implant Mater. 2020:333-73.

Kambale EK, Quetin Leclercq J, Memvanga PB, Beloqui A. An overview of herbal-based antidiabetic drug delivery systems: focus on lipid and inorganic based nanoformulations. Pharmaceutics. 2022;14(10):2135. doi: 10.3390/pharmaceutics14102135, PMID 36297570.

Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci. 2019;7(7):2652-74. doi: 10.1039/c9bm00423h, PMID 31094374.

Saeed BA, Lim V, Yusof NA, Khor KZ, Rahman HS, Abdul Samad N. Antiangiogenic properties of nanoparticles: a systematic review. Int J Nanomedicine. 2019;14:5135-46. doi: 10.2147/IJN.S199974, PMID 31371952.

Geoprincy G, Srri BV, Poonguzhali U, Gandhi NN, Renganathan S. A review on green synthesis of silver nanoparticles. Asian J Pharm Clin Res. 2013;6(1):8-12.

Vijayakumar S, Vinayagam R, Anand MA, Venkatachalam K, Saravanakumar K, Wang MH. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Technol. 2020;58:101786. doi: 10.1016/j.jddst.2020.101786.

Azeem MN, Ahmed OM, Shaban M, Elsayed KN. In vitro antioxidant, anticancer, anti-inflammatory, anti-diabetic and anti-Alzheimer potentials of innovative macroalgae bio-capped silver nanoparticles. Environ Sci Pollut Res Int. 2022;29(39):59930-47. doi: 10.1007/s11356-022-20039-x, PMID 35397021.

Kerry RG, Singh KR, Mahari S, Jena AB, Panigrahi B, Pradhan KC. Bioactive potential of morin loaded mesoporous silica nanoparticles: a nobel and efficient antioxidant, antidiabetic and biocompatible abilities in in-silico, in vitro, and in vivo models. Open Nano. 2023;10:100126. doi: 10.1016/j.onano.2023.100126.

Liu Y, Zeng S, Liu Y, Wu W, Shen Y, Zhang L. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol. 2018;114:632-9. doi: 10.1016/j.ijbiomac.2018.03.161, PMID 29601883.

Shwetha UR, Latha MS, Rajith Kumar CR, Kiran MS, Betageri VS. Facile synthesis of zinc oxide nanoparticles using novel Areca catechu leaves extract and their in vitro antidiabetic and anticancer studies. J Inorg Organomet Polym. 2020;30(12):4876-83. doi: 10.1007/s10904-020-01575-w.

Vijayakumar S, Divya M, Vaseeharan B, Chen J, Biruntha M, Silva LP. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): a potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J Inorg Organomet Polym. 2021;31(2):624-35. doi: 10.1007/s10904-020-01713-4.

Rani P, Kumar N, Perinmbam K, Devanesan S, AlSalhi MS, Asemi N. Synthesis of silver nanoparticles by leaf extract of cucumis melo L. and their in vitro antidiabetic and anticoccidial activities. Molecules. 2023;28(13):4995. doi: 10.3390/molecules28134995, PMID 37446657.

Zhao Y, Trewyn BG, Slowing II, Lin VS. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc. 2009;131(24):8398-400. doi: 10.1021/ja901831u, PMID 19476380.

Published

07-09-2024

How to Cite

YADAV, N. K., MAZUMDER, R., RANI, A., & KUMAR, A. (2024). CURRENT PERSPECTIVES ON USING NANOPARTICLES FOR DIABETES MANAGEMENT. International Journal of Applied Pharmaceutics, 16(5), 38–45. https://doi.org/10.22159/ijap.2024v16i5.51084

Issue

Section

Review Article(s)