BEYOND THE HORIZON: RECENT ADVANCES IN HOT MELT EXTRUSION TECHNIQUES AND TECHNOLOGIES
DOI:
https://doi.org/10.22159/ijap.2024v16i5.51425Keywords:
Hot melt extrusion, Polyethylene oxide, Polyvinylpyrrolidones, Single-screw extruder, Double-screw extruder, Spheronization, Continuous manufacturing, Co-extrusion, 3D printing in hot melt extrusion, Smart polymerAbstract
This review article aims to explore the dynamic landscape of Hot Melt Extrusion (HME) technology, focusing on the spectrum of materials and machinery shaping innovation in the field. Polyethylene Oxide (PEO), Polyvinylpyrrolidones (PVP), Polypropylene (PP), Polyvinyl Acetate (PVA), and Polycaprolactone (PCL) play pivotal roles in HME and contribute to advancements in pharmaceutical manufacturing. This review sheds light on their unique contributions to HME tapestry. This review meticulously explored the machinery that orchestrates HME, including single- and double-screw extruders, as well as Extrusion Spheronization (ES). The search criteria were based on a comprehensive analysis of previous studies since the discovery of the HME, including new patented discoveries. We utilized various scholarly resources such as Google Scholar, Google Books, PubMed, Elsevier, Nature, Springer, ScienceDirect, and other indexed search engines. Case studies highlighted the real-world impact of HME in Continuous Manufacturing (CM) scenarios, emphasizing its importance in pharmaceutical production. The review also discusses the specifics of extrusion and co-extrusion, explaining how compound droplets are formed and collected, which is very important for making capsules-extrusion has emerged as a protagonist in the pharmaceutical industry, with 3D printing driving innovation beyond conventional boundaries. The amalgamation of HME and 3D printing offers new possibilities for drug delivery. This review sheds light on the diverse polymers involved in hot melt and emphasizes their importance in pharmaceutical manufacturing. This study provides valuable insights into the applications, methodologies, and future advancements of HME.
Downloads
References
Maniruzzaman M, Boateng JS, Bonnefille M, Aranyos A, Mitchell JC, Douroumis D. Taste masking of paracetamol by hot melt extrusion an in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2012;80(2):433-42. doi: 10.1016/j.ejpb.2011.10.019, PMID 22108493.
Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K. Melt extrusion process to product. Expert Opin Drug Deliv. 2012;9(1):105-25. doi: 10.1517/17425247.2012.642365, PMID 22145932.
Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK. Pharmaceutical applications of hot melt extrusion part I. Drug Dev Ind Pharm. 2007;33(9):909-26. doi: 10.1080/03639040701498759, PMID 17891577.
Patil H, Tiwari RV, Repka MA. Hot melt extrusion from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20-42. doi: 10.1208/s12249-015-0360-7, PMID 26159653.
Ghebre S, Charles EM, Feng Z, James D, Charles M. Pharmaceutical extrusion technology. CRC Press. 2003;14:424. doi: 10.1201/9780203911532.
Chokshi R, Zia H. Hot melt extrusion technique: a review. Iran J Pharm Res. 2004;3:3-16.
Loveleen A, Tanushree C. A review on new generation oro dispersible films and its novel approaches. Indo Am J Pharm Res. 2017;7:7451-70.
Stankovic M, Frijlink HW, Hinrichs WL. Polymeric formulations for drug release prepared by hot melt extrusion application and characterization. Drug Discov Today. 2015;20(7):812-23. doi: 10.1016/j.drudis.2015.01.012, PMID 25660507.
Sax G, Winter G. Mechanistic studies on the release of lysozyme from twin screw extruded lipid implants. J Control Release. 2012;163(2):187-94. doi: 10.1016/j.jconrel.2012.08.025, PMID 22964391.
Sax G, Winter G. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. J Control Release. 2012;163(2):187-94. doi: 10.1016/j.jconrel.2012.08.025, PMID 22964391.
Breitenbach J. Melt extrusion from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107-17. doi: 10.1016/s0939-6411(02)00061-9, PMID 12191680.
Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot melt extrusion. Biomaterials. 2002;23(21):4241-8. doi: 10.1016/s0142-9612(02)00187-4, PMID 12194527.
Prodduturi S, Manek RV, Kolling WM, Stodghill SP, Repka MA. Hot melt solid-state stability and characterization of hot melt extruded poly(ethylene oxide) films. J Pharm Sci. 2005;94(10):2232-45. doi: 10.1002/jps.20437, PMID 16136579.
Bicerano J. Prediction of the properties of polymers from their structures. Journal of Macromolecular Science Part C Polymer Reviews. 1996;36(1):161-96. doi: 10.1080/15321799608009645.
Gupta SS, Meena A, Parikh T, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion-I polyvinyl pyrrolidone and related polymers. J Excipients Food Chem. 2014;5:32-45.
Chan SY, Qi S, Craig DQ. An investigation into the influence of drug polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations. Int J Pharm. 2015;496(1):95-106. doi: 10.1016/j.ijpharm.2015.09.063, PMID 26428633.
Maddah HA. Polypropylene as a promising plastic a review. Am J Polym Sci. 2016;6:1-11.
Joseph PV, Rabello MS, Mattoso LH, Joseph K, Thomas S. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Compos Sci Technol. 2002;62(10-11):1357-72. doi: 10.1016/S0266-3538(02)00080-5.
Somani RH, Yang L, Sics I, Hsiao BS, Pogodina NV, Winter HH. Orientation-induced crystallization in isotactic polypropylene melt by shear deformation. Macromol Symp. 2002;185(1):105-17. doi: 10.1002/1521-3900(200208)185:1<105::AID-MASY105>3.0.CO;2-3.
Schmidt WG, Mehnert W, Fromming KH. Controlled release from spherical matrices prepared in a laboratory scale rotor granulator release mechanisms interpretation using individual pellet data. Eur J Pharm Biopharm. 1996;42:348-50.
V Bhowmick A, Batra Behera BK, Ray AR. Sustained release of ferrous sulfate from polymer-coated gum arabica pellets. J Pharm Sci. 1994;83(5):632-5. doi: 10.1002/jps.2600830507, PMID 8071810.
Zhang F, McGinity JW. Properties of hot melt extruded theophylline tablets containing poly(vinyl acetate). Drug Dev Ind Pharm. 2000;26(9):931-42. doi: 10.1081/ddc-100101320, PMID 10914317.
Monschke M, Kayser K, Wagner KG. Processing of polyvinyl acetate phthalate in hot melt extrusion preparation of amorphous solid dispersions. Pharmaceutics. 2020;12(4):337. doi: 10.3390/pharmaceutics12040337, PMID 32283725.
Mehuys E, Remon JP, Vervaet C. Production of enteric capsules by means of hot-melt extrusion. Eur J Pharm Sci. 2005;24(2-3):207-12. doi: 10.1016/j.ejps.2004.10.011, PMID 15661492.
Woodruff MA, Hutmacher DW. The return of a forgotten polymer polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217-56. doi: 10.1016/j.progpolymsci.2010.04.002.
Temtem M, Casimiro T, Mano JF, Aguiar Ricardo A. Preparation of membranes with polysulfone polycaprolactone blends using a high-pressure cell specially designed for a CO2-assisted phase inversion. J Supercrit Fluids. 2008;43(3):542-8. doi: 10.1016/j.supflu.2007.07.012.
Patel K, Chikkali SH, Sivaram S. Ultrahigh molecular weight polyethylene catalysis structure properties processing and applications. Prog Polym Sci. 2020;109:101290. doi: 10.1016/j.progpolymsci.2020.101290.
Gall M, Freudenthaler PJ, Fischer J, Lang RW. Characterization of composition and structure property relationships of commercial post consumer polyethylene and polypropylene recyclates. Polymers. 2021;13(10):1574. doi: 10.3390/polym13101574, PMID 34068974.
Govindasamy K, Dahlan NA, Janarthanan P, Goh KL, Chai SP, Pasbakhsh P. Electrospun chitosan polyethylene oxide (PEO) halloysites (HAL) membranes for bone regeneration applications. Appl Clay Sci. 2020;190:105601. doi: 10.1016/j.clay.2020.105601.
Farea MO, Abdelghany AM, Oraby AH. Optical and dielectric characteristics of polyethylene oxide sodium alginate modified gold nanocomposites. RSC Adv. 2020;10(62):37621-30. doi: 10.1039/d0ra07601e, PMID 35515144.
Mireles LK, Wu MR, Saadeh N, Yahia L, Sacher E. Physicochemical characterization of polyvinyl pyrrolidone a tale of two polyvinyl pyrrolidones. ACS Omega. 2020;5(47):30461-7. doi: 10.1021/acsomega.0c04010, PMID 33283094.
Malek M, Jackowski M, Lasica W, Kadela M. Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on portland cement. Materials (Basel). 2020;13(8):1827. doi: 10.3390/ma13081827, PMID 32294901.
Shirvanimoghaddam K, Balaji KV, Yadav R, Zabihi O, Ahmadi M, Adetunji P. Balancing the toughness and strength in polypropylene composites. Composites Part B Engineering. 2021;223:109121. doi: 10.1016/j.compositesb.2021.109121.
Sawant SB, Mestry SU, Mohanty JD, Mhaske ST, Gadekar PT. Polyvinyl acetate and polyurethane vinyl acetate hybrid emulsion synthesis characterization and properties. Iran Polym J. 2023;32(11):1421-32. doi: 10.1007/s13726-023-01208-2.
Gadhave RV, Dhawale PV. State of research and trends in the development of polyvinyl acetate-based wood adhesive. OJPChem. 2022;12(1):13-42. doi: 10.4236/ojpchem.2022.121002.
Abrisham M, Noroozi M, Panahi Sarmad M, Arjmand M, Goodarzi V, Shakeri Y. The role of polycaprolactone triol (PCL-T) in biomedical applications a state-of-the-art review. Eur Polym J. 2020;131:109701. doi: 10.1016/j.eurpolymj.2020.109701.
Kurakula M, Rao GS, Yadav KS. Fabrication and characterization of polycaprolactone-based green materials for drug delivery. In: Applications of Advanced Green Materials Elsevier; 2021. p. 395-423. doi: 10.1016/B978-0-12-820484-9. 016-700.
Bruin S, Van Zuilichem DJ, Stolp W. A review of fundamental and engineering aspects of extrusion of biopolymers in a single screw extruder. J Food Process Engineering. 1978;2(1):1-37. doi: 10.1111/j.1745-4530.1978.tb00193.x.
Paul A, Martins A, Eddy AO. The design and construction of a single screw extruder. JMEST. 2019;6:2458.
Rauwendaal CJ. Analysis and experimental evaluation of twin screw extruders. Polym Eng Sci. 1981;21(16):1092-100. doi: 10.1002/pen.760211608.
Frame ND. Operational characteristics of the co-rotating twin screw extruder. In: The technology of extrusion cooking. Berlin: Springer US; 1994. p. 1-51.
Dhaval M, Sharma S, Dudhat K, Chavda J. Twin screw extruder in pharmaceutical industry history working principle applications and marketed products an in depth review. J Pharm Innov. 2022;17(2):294-318. doi: 10.1007/s12247-020-09520-7.
Erol M, Kalyon DM. Assessment of the degree of mixedness of filled polymers effects of processing histories in batch mixer and co-rotating and counter-rotating twin screw extruders. Int Polym Process. 2005;20(3):228-37. doi: 10.3139/217.1882.
Poulesquen A, Vergnes B, Cassagnau P, Michel A, Carneiro OS, Covas JA. A study of residence time distribution in co-rotating twin screw extruders. part ii: experimental validation. Polym Eng Sci. 2003;43(12):1849-62. doi: 10.1002/pen.10157.
Vervaet C, Baert L, Remon JP. Extrusion spheronisation a literature review. International Journal of Pharmaceutics. 1995;116(2):131-46. doi: 10.1016/0378-5173(94)00311-R.
Harrison PJ, Newton JM, Rowe RC. The characterization of wet powder masses suitable for extrusion spheronization. J Pharm Pharmacol. 1985;37(10):686-91. doi: 10.1111/j.2042-7158.1985.tb04943.x, PMID 2867135.
Harrison PJ, Newton JM, Rowe RC. Flow defects in wet powder mass extrusion. J Pharm Pharmacol. 1985;37(2):81-3. doi: 10.1111/j.2042-7158.1985.tb05011.x, PMID 2858554.
Baert L, Fanara D, De Baets P, Remon JP. Instrumentation of a gravity feed extruder and the influence of the composition of binary and ternary mixtures on the extrusion forces. J Pharm Pharmacol. 1991;43(11):745-9. doi: 10.1111/j.2042-7158.1991.tb03475.x, PMID 1686900.
Ghebre S. Pharmaceutical Pelletization Technology. 1st Edition. Isaac CRC Press; 2022. p. 288.
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A. Recent progress in hot melt extrusion technology in pharmaceutical dosage form design. Recent Adv Drug Deliv Formul. 2022;16(3):170-91. doi: 10.2174/2667387816666220819124605, PMID 35986528.
Chavan RB, Thipparaboina R, Yadav B, Shastri NR. Continuous manufacturing of co-crystals challenges and prospects. Drug Deliv Transl Res. 2018;8(6):1726-39. doi: 10.1007/s13346-018-0479-7, PMID 29352367.
Crawford DE, Miskimmin CK, Cahir J, James SL. Continuous multi-step synthesis by extrusion telescoping solvent-free reactions for greater efficiency. Chem Commun (Camb). 2017;53(97):13067-70. doi: 10.1039/c7cc06010f, PMID 29165442.
Kleinebudde P, Johannes K, Jukka R. Continuous manufacturing of pharmaceuticals. J eds. John Wiley & Sons; 2017.
Bandari S, Nyavanandi D, Dumpa N, Repka MA. Coupling hot melt extrusion and fused deposition modelling critical properties for successful performance. Adv Drug Deliv Rev. 2021;172:52-63. doi: 10.1016/j.addr.2021.02.006, PMID 33571550.
Ganjyal G, Hanna M. A review on residence time distribution (RTD) in food extruders and study on the potential of neural networks in RTD modeling. J Food Sci. 2002;67(6):1996-2002. doi: 10.1111/j.1365-2621.2002.tb09491.x.
Reitz E, Podhaisky H, Ely D, Thommes M. Residence time modeling of hot melt extrusion processes. Eur J Pharm Biopharm. 2013;85:1200-5. doi: 10.1016/j.ejpb.2013.07.019, PMID 23933247.
Melocchi A, Loreti G, Del Curto MD, Maroni A, Gazzaniga A, Zema L. Evaluation of hot melt extrusion and injection molding for continuous manufacturing of immediate release tablets. J Pharm Sci. 2015;104(6):1971-80. doi: 10.1002/jps.24419, PMID 25761921.
Munnangi SR, Youssef AA, Narala N, Lakkala P, Vemula SK, Alluri R. Continuous manufacturing of solvent-free cyclodextrin inclusion complexes for enhanced drug solubility via hot melt extrusion a quality by design approach. Pharmaceutics. 2023;15(9):2203. doi: 10.3390/pharmaceutics15092203, PMID 37765172.
Risch SJ, Chapter PS. 11 Encapsulation of flavors by extrusion. Vol. 370. American Chemical Society; 1988. p. 103-9.
Agassant JF, Demay Y. Investigation of the polymer coextrusion process a review. Polymers. 2022;14(7):1309. doi: 10.3390/polym14071309, PMID 35406183.
Scheele GF, Meister BJ. Drop formation at low velocities in liquid-liquid systems. Vol. 14. AICHE; 1968. p. 9-15.
McCarthy MJ, Molloy NA. Review of stability of liquid jets and the influence of nozzle design. Chem Eng J. 1974;7(1):1-20. doi: 10.1016/0300-9467(74)80021-3.
Sundberg DC, Durant YG. Latex particle morphology fundamental aspects a review. Polym React Eng. 2003;11(3):379-432. doi: 10.1081/PRE-120024420.
Oxley JD. Coextrusion for food ingredients and nutraceutical encapsulation principles and technology. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing; 2012. p. 131-50.
Wang IJ, George R, Roberts BA, Pederson SR. Co-extruded medical balloons and catheter using such balloons. U.S. Patent No. 5,195,969; 1993.
Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D. High-performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun. 2013;4(1):1633. doi: 10.1038/ncomms2639, PMID 23535654.
Barth S, Hernandez Ramirez F, Holmes JD, Romano Rodriguez A. Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci. 2010;55(6):563-627. doi: 10.1016/j.pmatsci.2010.02.001.
Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30(26):4325-35. doi: 10.1016/j.biomaterials.2009.04.042, PMID 19501901.
Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber an overview. Prog Polym Sci. 2007;32(4):455-82. doi: 10.1016/j.progpolymsci.2007.01.005.
Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun bisbte alloys. Appl Phys Lett. 2009;94(10):102111. doi: 10.1063/1.3097026.
Venugopal J, Ramakrishna S. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng. 2005;11(5-6):847-54. doi: 10.1089/ten.2005.11.847, PMID 15998224.
Pal J, Sharma S, Sanwaria S, Kulshreshtha R, Nandan B, Srivastava RK. Conducive 3D porous mesh of poly(ε-caprolactone) made via emulsion electrospinning. Polymer. 2014;55(16):3970-9. doi: 10.1016/j.polymer.2014.06.067.
Brown TD, Edin F, Detta N, Skelton AD, Hutmacher DW, Dalton PD. Melt electrospinning of poly(ε-caprolactone) scaffolds phenomenological observations associated with collection and direct writing. Mater Sci Eng C Mater Biol Appl. 2014;45:698-708. doi: 10.1016/j.msec.2014.07.034, PMID 25491879.
Mellado P, McIlwee HA, Badrossamay MR, Goss JA, Mahadevan L, Kit Parker K. A simple model for nanofiber formation by rotary jet spinning. Appl Phys Lett. 2011;99(20):1-18. doi: 10.1063/1.3662015.
Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers fiber diameter distributions and onset of fiber breakup. Polymer. 2007;48(11):3306-16. doi: 10.1016/j.polymer.2007.04.005.
Shanmuganathan K, Fang Y, Chou DY, Sparks S, Hibbert J, Ellison CJ. Solventless high throughput manufacturing of poly(butylene terephthalate) nanofibers. ACS Macro Lett. 2012;1(8):960-4. doi: 10.1021/mz3001995, PMID 35607051.
Jordan AM, Viswanath V, Kim SE, Pokorski JK, Korley LT. Processing and surface modification of polymer nanofibers for biological scaffolds a review. J Mater Chem B. 2016;4(36):5958-74. doi: 10.1039/c6tb01303a, PMID 32263485.
Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240-53. doi: 10.1021/ac403397r, PMID 24432804.
Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D printed drug products. Adv Drug Deliv Rev. 2017;108:39-50. doi: 10.1016/j.addr.2016.03.001, PMID 27001902.
Sachs EM, Haggerty JS, Cima MJ, Williams PA. Three-dimensional printing techniques. U.S. Patent; 1993.
Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1-2):376-94. doi: 10.1016/j.ijpharm.2015.12.071, PMID 26757150.
O’Connor TF, Yu LX, Lee SL. Emerging technology: a key enabler for modernizing pharmaceutical manufacturing and advancing product quality. Int J Pharm. 2016;509(1-2):492-8. doi: 10.1016/j.ijpharm.2016.05.058, PMID 27260134.
Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1-2):186-97. doi: 10.1016/j.ijpharm.2016.12.049, PMID 28017768.
Afsana JV, Jain V, Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des. 2018;24(42):5062-71. doi: 10.2174/1381612825666190215122208, PMID 30767736.
Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A. Shaping the future recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081-94. doi: 10.1080/17425247.2019.1660318, PMID 31478752.
Nukala PK, Palekar S, Solanki N, Fu Y, Patki M, Shohatee AA. Investigating the application of FDM 3D printing pattern in preparation of patient-tailored dosage forms. J 3D Print Med. 2019;3(1):23-37. doi: 10.2217/3dp-2018-0028.
Bandari S, Nyavanandi D, Dumpa N, Repka MA. Coupling hot melt extrusion and fused deposition modeling critical properties for successful performance. Adv Drug Deliv Rev. 2021;172:52-63. doi: 10.1016/j.addr.2021.02.006, PMID 33571550.
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA and their functions in widespread applications a comprehensive review. Adv Drug Deliv Rev. 2016;107:367-92. doi: 10.1016/j.addr.2016.06.012, PMID 27356150.
Ebrahimi F, Ramezani Dana H. Polylactic acid (PLA) polymers from properties to biomedical applications. Int J Polym Mater Polym Biomater. 2022;71(15):1117-30. doi: 10.1080/00914037.2021.1944140.
Sharma V, Sehgal R, Gupta R. Polyhydroxyalkanoate (PHA) properties and modifications. Polymer. 2021;212:123161. doi: 10.1016/j.polymer.2020.123161.
Zhao K, Deng Y, Chun Chen JC, Chen GQ. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials. 2003;24(6):1041-5. doi: 10.1016/s0142-9612(02)00426-x, PMID 12504526.
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29(7-9):863-93. doi: 10.1080/09205063.2017.1394711, PMID 29053081.
De Paiva MO, Lourenço AA. Comportamentosdisruptivos versus rendimentoacademico uma abordagem com modelos de equacoesestruturais. Psicol Educ Cult. 2009;13:283-306.
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41-58. doi: 10.4155/tde.14.91, PMID 25565440.
Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone) layered double hydroxide nanocomposites. J Appl Polym Sci. 2010;116(5):2658-67. doi: 10.1002/app.31787.
Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels a review. Mater Sci Eng C Mater Biol Appl. 2017;70(1):842-55. doi: 10.1016/j.msec.2016.09.081, PMID 27770962.
Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Poly(N-isopropyl acrylamide)-based smart hydrogels design properties and applications. Prog Mater Sci. 2021;115:100702. doi: 10.1016/j.pmatsci.2020.100702.
Id DS, Nowak A. Thermal properties of poly (N, N-dimethylaminoethyl methacrylate). Plos One. 2019;14(6):1-11. doi: 10.1371/journal.pone.0217441, PMID 31166982.
Poly SD. (N, N-dimethylaminoethyl methacrylate) as a bioactive polyelectrolyte production and properties. R Soc Open Sci. 2023 Sep 20;10(9):230188. doi: 10.1098/rsos.230188, PMID: 37736533.
Kozanoglu S, Ozdemir T, Usanmaz A. Polymerization of N-vinylcaprolactam and characterization of poly(N-vinylcaprolactam). J Macromol Sci A. 2011;48(6):467-77. doi: 10.1080/10601325.2011.573350.
Cortez Lemus NA, Licea Claverie A. Poly(N-vinyl caprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci. 2016;53:1-51. doi: 10.1016/j.progpolymsci.2015.08.001.
Akindoyo JO, Beg MD, Ghazali S, Heim HP, Feldmann M. Impact modified PLA-hydroxyapatite composites-thermo-mechanical properties. Compos A. 2018;107:326-33. doi: 10.1016/j.compositesa.2018.01.017.
Perez Davila S, Garrido Gulias N, Gonzalez Rodriguez L, Lopez Alvarez M, Serra J, Lopez Periago JE. Physicochemical properties of 3D-printed polylactic acid hydroxyapatite scaffolds. Polymer. 2023;15(13):2849. doi: 10.3390/polym15132849, PMID 37447495.
Khan MS, Shakoor A. Ionic conductance thermal and morphological behavior of peo-graphene oxide salts composites. J Chem. 2015;2015:1-6. doi: 10.1155/2015/695930.
Abdollahi S, Ehsani M, Morshedian J, Khonakdar HA, Reuter U. Structural and electrochemical properties of PEO/PAN nanofibrous blends prediction of graphene localization. Polym Compos. 2018;39(10):3626-35. doi: 10.1002/pc.24390.
Published
How to Cite
Issue
Section
Copyright (c) 2024 MAGED MOHAMMED ABDO MOHSEN, AMIT B. PATIL, MAGED ALKANAD, DARSHAN PATIL
This work is licensed under a Creative Commons Attribution 4.0 International License.