SYNERGISTIC POTENTIAL OF NIGELLA SATIVA L. AND TRIGONELLA FOENUM-GRAECUM: INTEGRATED NETWORK PHARMACOLOGY FOR DIABETIC WOUND HEALING
DOI:
https://doi.org/10.22159/ijap.2024v16i6.51718Keywords:
DW, Network pharmacology, N. sativa L, T. foenum-graecumAbstract
Objective: Diabetes Mellitus (DM) is a metabolic disorder marked by elevated blood glucose levels, and one of the issues linked to DM involves the development of Diabetic Wounds (DW). DW is susceptible to infection and develops into chronic wounds if not treated properly. This study aimed to investigate the network pharmacology of N. sativa L. and T. foenum-graecum, emphasizing on their potential as DW treatment candidates.
Methods: Various databases were used in this study, including PubChem, Dr. Duke's Phytochemistry and Ethnobotany, and KNApSAcK Family. Swiss Target Prediction and Way2Drug PASS Online were utilized for biological activity and protein target prediction. The DW pathway's protein-protein interactions were examined with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, GeneCards, and STRING databases. STRING was used to predict the metabolite's action. The relationship between metabolites and target proteins was predicted using STITCH, and Cytoscape was used to visualize the network.
Result: The results showed that ten active ingredients (five active ingredients in N. sativa L. and five active ingredients in T. foenoem-graecum) contributed to DW healing by affecting Tumor Necrosis Factor (TNF), Interleukin-1beta (IL1B), JUN, Caspase 3 (CASP3), Interleukin-6 (IL-6), Alpha Kinase Threonine-1 (AKT1), Vascular Endothelial Growth Factor-A (VEGFA), and Mitogen-Activated Protein Kinase 3 (MAPK3) genes. Furthermore, the ten active ingredients correlated with twenty-eight intracellular proteins, resulting in a mechanism involving eight DW signalling pathways.
Conclusion: Based on network pharmacology analysis, we determine that N. sativa L. and T. foenoem-graecum combination can potentially treat DW
Downloads
References
Shailaja K., Abraham A., Bhargavi B., and Devika R. Influence of pharmaceutical care activities on knowledge attitude and practice (KAP) among diabetic patients in a tertiary care hospital. International Journal of Pharmacy and Pharmaceutical Sciences. https://journals.innovareacademics.in/index.php/ijpps/article/view/36984/22403. Published 2020: 12(5):36–40. Accessed July 8, 2024. doi: 10.22159/ijpps.2020v12i5.36984.
Arman E., Dafriani A. A, P., and Almasdy D. Combined effect of topical application of virgin coconut oil (VCO) and black cumin oil (Nigella sativa) on the upregulation of VEGF gene expression and wound healing in diabetic ulcerated rats. International Journal of Applied Pharmaceutics.https://journals.innovareacademics.in/index.php/ijap/article/view/50629. Published February 2024; 16(1):35–40. Accessed July 8, 2024. doi: 10.22159/ijap.2024.v16s1.07.
Marchianti A. C. N., Prameswari M. C., Sakinah E. N., and Ulfa E. U. The enhancement of collagen synthesis process on diabetic wound by Merremia mammosa (Lour.) extract fraction. International Journal of Pharmacy and Pharmaceutical Sciences. https://journals.innovareacademics.in/index.php/ijpps/article/view/30170/19140. Published February 2019;11(2):47–50. Accessed July 8, 2024. doi: 10.22159/ijpps.2019v11i2.30170.
Maslova E, Eisaiankhongi L, Sjöberg F, McCarthy RR. Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429633/. Published September 2021;7(1):73. Accessed January 29, 2024. doi: 10.1038/s41522-021-00243-2.
Giannopoulos S, Armstrong EJ. Diabetes mellitus: an important risk factor for peripheral vascular disease. Expert Review of Cardiovascular Therapy. https://pubmed.ncbi.nlm.nih.gov/32129693/. Published March 2020;18(3):131–7. Accessed January 29, 2024. doi: 10.1080/14779072.2020.1736562.
Lipsky BA, Senneville É, Abbas ZG, Aragón-Sánchez J, Diggle M, Embil JM, et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. https://pubmed.ncbi.nlm.nih.gov/32176444/ 2020;36 Suppl 1:e3280. Published March 2020;36: 1:e3280. Accessed January 29, 2024. doi: 10.1002/dmrr.3280.
Sukmawan YP, Alifiar I, Nurdianti L, Ningsih WR. Wound Healing Effectivity of the Ethanolic Extracts of Ageratum conyzoides L. Leaf (White and Purple Flower Type) and Centella asiatica and Astaxanthin Combination Gel Preparation in Animal Model. Turk J Pharm Sci. https://pubmed.ncbi.nlm.nih.gov/34719 189/. Published October 2021;18(5):609–15. Accessed February 15, 2024. doi: 10.4274/tjps.galenos.2021.34676.
Ivanalee AS, Yudaniayanti IS, Yunita MN, Triakoso N, Hamid IS, Saputro AL. Efektivitas Sugar Dressing (100% Gula) dalam Meningkatkan Kepadatan Kolagen pada Proses Penyembuhan Luka Bakar Buatan pada Kulit Tikus Putih (Rattus norvegicus) Jantan. J Med Vet. https://e-journal.unair.ac.id/JMV/article/view/9425. Published September 2018;1(3):134. Accessed July 8, 2024.
Nourbar E, Mirazi N, Yari S, Rafieian-Kopaei M, Nasri H. Effect of Hydroethanolic Extract of Nigella sativa L. on Skin Wound Healing Process in Diabetic Male Rats. Int J Prev Med. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390428/. Published February 2019;10:18. Accessed 29 January 2024. doi: 10.4103/ijpvm.IJPVM_276_18.
Bahar M, Yusmaini H. Efek Antimikroba Ekstrak Lidah Buaya (Aloe vera) Terhadap Isolat Bakteri Penyebab Acne vulgaris Secara Invitro. Jurnal Profesi Medika: Jurnal Kedokteran dan Kesehatan. https://ejournal.upnvj.ac.id/JPM/article/view/222. Published 2017;11(2). Accessed January 29, 2024. doi: https://doi.org/10.33533/jpm.v11i2.222.
Susilowati R, Rohmanningrum UM. Effective Combination of Nigella sativa and Trigonella foenum-graecum Seed Extract on Wound Healing in Diabetic Mice. Jurnal Biodjati. https://journal.uinsgd.ac.id/index.php/biodjati/article/view/19968. Published May 2023;8(1):106–116. Accessed January 29, 2024. doi: 10.15575/biodjati.v8i1.19968.
Tan X, Pei W, Xie C, Wang Z, Mao T, Zhao X, et al. Network Pharmacology Identifies the Mechanisms of Action of Tongxie Anchang Decoction in the Treatment of Irritable Bowel Syndrome with Diarrhea Predominant. Evid Based Complement Alternat Med. https://pubmed.ncbi.nlm.nih.gov/33281910/. Published 2020; 2020: 2723705. Accessed February 7, 2024. doi: 10.1155/2020/2723705.
Chandran U, Mehendale N, Patil S, Chaguturu R, Patwardhan B. Network Pharmacology. Innovative Approaches in Drug Discovery. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148629/. Published 2017;127–64. Accessed February 7, 2024. doi: 10.1016/B978-0-12-801814-9.00005-2.
Firzannida, F., Bagaskara, S., Savira, S. S., Fadnurrahim, A., & Rofida, S. Network pharmacology of black cumin (Nigella sativa L.) as a candidate of OMAI in colorectal cancer: In silico study. Indonesian Journal of Biotechnology. https://journal.ugm.ac.id/ijbiotech/article/view/70699. Published 2022:27(2): 87-98. Accessed January 29, 2024. https://doi.org/10.22146/ijbiotech.70699
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Sci. https://pubmed.ncbi.nlm. nih.gov/32540001/. Published July 2020;296:110471. Accessed 4 February 2024. doi: 10.1016/j.plantsci.2020.110471.
Savithramma N, Yugandhar P, Prasad KS, Ankanna S, Chetty KM. Ethnomedicinal studies on plants used by Yanadi tribe of Chandragiri reserve forest area, Chittoor District, Andhra Pradesh, India. J Intercult Ethnopharmacol. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805147/. Published January 2016;5(1):49–56. Accessed 4 February 2024. doi: 10.5455/jice.20160122065531.
Sallehuddin N, Nordin A, Bt Hj Idrus R, Fauzi MB. Nigella sativa and Its Active Compound, Thymoquinone, Accelerate Wound Healing in an In Vivo Animal Model: A Comprehensive Review. Int J Environ Res Public Health. https://pubmed.ncbi. nlm.nih.gov/32545210/. Published June 2020;17(11):4160. Accessed 4 February 2024. doi: 10.3390/ijerph17114160.
Szabó K, Gesztelyi R, Lampé N, Kiss R, Remenyik J, Pesti-Asbóth G, et al. Fenugreek (Trigonella foenum-graecum) Seed Flour and Diosgenin Preserve Endothelium-Dependent Arterial Relaxation in a Rat Model of Early-Stage Metabolic Syndrome. Int J Mol Sci. https://pubmed.ncbi.nlm.nih.gov/29534453/. Published March 2018;19(3):798. Accessed 4 February 2024. doi: 10.3390/ijms19030798.
Sharma V, Singh P, Rani A. Antimicrobial Activity of Trigonella foenum-graecum L. (Fenugreek). European Journal of Experimental Biology. https://www.primescholars.com/articles/antimicrobial-activity-of-trigonella-foenumgraecum-l-fenugreek. pdf. Published January 2017;07:1-4. Accessed 29 January 2024. doi: 10.21767/2248-9215.100004.
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, et al. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem Heterocycl Comp. https://hgs.osi.lv/index.php/hgs/article/view/1585. Published June 2014;50(3):444–457. Accessed 29 January 2024. doi: 10.1007/s10593-014-1496-1.
Ramadhan DSF, Fakih TM, Arfan A. Activity Prediction of Bioactive Compounds Contained in Etlingera Elatior Against the SARS-CoV-2 Main Protease: an in Silico Approach. Borneo Journal of Pharmacy. https://journal.umpr.ac.id/index.php/bjop/article/view/1634/1494. Published 2020;3(4):235–242. Accessed 29 January 2024. doi: 10.33084/bjop.v3i4.1634.
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. Swiss Target Prediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086140/. Published July 2014;42: W32–W38. Accessed 29 January 2024. doi: 10.1093/nar/gku293.
Altman T, Travers M, Kothari A, Caspi R, Karp PD. A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665663/. Published March 2013;14:112. Accessed 29 January 2024. doi: 10.1186/1471-2105-14-112.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. https://pubmed.ncbi.nlm.nih.gov/30476243/. Published January 2019;47(D1):D607–13. Accessed 8 July 2024. doi: 10.1093/nar/gky1131.
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. https://pubmed.ncbi.nlm.nih.gov/26590256/. Published January 2016;44(D1):D380-384. Accessed 8 July 2024. doi: 10.1093/nar/gkv1277.
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res. https://pubmed.ncbi.nlm.nih.gov/30450911/. Published February 2019;18(2):623–632. Accessed 8 July 2024. doi: 10.1021/acs.jproteome.8b00702.
Hadian Y, Bagood MD, Dahle SE, Sood A, Isseroff RR. Interleukin-17: Potential Target for Chronic Wounds. Mediators Inflamm. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885835/. Published November 2019;1297675. Accessed 8 July 2024. doi: 10.1155/2019/1297675.
Fu J, Huang J, Lin M, Xie T, You T. Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization. Journal of Surgical Research. https://pubmed.ncbi.nlm.nih.gov/31606511/. Published February 2020;246:213–223. Accessed 8 July 2024. doi: 10.1016/j.jss.2019.09.011.
Rodrigues HG, Vinolo MAR, Sato FT, Magdalon J, Kuhl CMC, Yamagata AS, et al. Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. Ljubimov AV, editor. PLoS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165115. Published October 2016;11(10):e0165115. Accessed 8 July 2024. doi: 10.1371/journal.pone.0165115.
Majumder S, McGeachy MJ. IL-17 in the Pathogenesis of Disease: Good Intentions Gone Awry. Annual Review of Immunology. https://pubmed.ncbi.nlm.nih.gov/33577346/. Published 2021;39(1):537–556. Accessed 8 July 2024. doi: 10.1146/annurev-immunol-101819-092536.
Stachura A, Khanna I, Krysiak P, Paskal W, Włodarski P. Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. International Journal of Molecular Sciences. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369324/. Published January 2022;23(15):8621. Accessed 8 July 2024. doi: 10.3390/ijms23158621.
Cooper PO, Haas MR, Noonepalle S Kumar R, Shook BA. Dermal Drivers of Injury-Induced Inflammation: Contribution of Adipocytes and Fibroblasts. International Journal of Molecular Sciences. https://www.mdpi.com/1422-0067/22/4/1933. Published January 2021;22(4):1933. Accessed 29 January 2024. doi: 10.3390/ijms22041933.
Hohmann MS, Habiel DM, Coelho AL, Verri WA, Hogaboam CM. Quercetin Enhances Ligand-induced Apoptosis in Senescent Idiopathic Pulmonary Fibrosis Fibroblasts and Reduces Lung Fibrosis In Vivo. Am J Respir Cell Mol Biol. https://pubmed.ncbi.nlm.nih.gov/30109946/. Published January 2019;60(1):28–40. Accessed 29 January 2024. doi: 10.1165/rcmb.2017-0289OC.
Kmail A, Said O, Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr Issues Mol Biol. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670084/. Published November 2023;45(11):9039–9059. Accessed 29 January 2024. doi: 10.3390/cimb45110567.
Wang X, Li W, Lu S, Ma Z. Modulation of the Wound Healing through Noncoding RNA Interplay and GSK-3β/NF-κB Signaling Interaction. Int J Genomics. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413067/. Published August 2021;2021:9709290. Accessed 29 January 2024. doi: 10.1155/2021/9709290.
Khalid M, Petroianu G, Adem A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules. https://www.mdpi.com/2218-273X/12/4/542. Published April 2022;12(4):542. Accessed 29 January 2024. doi: 10.3390/biom12040542.
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, et al. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130901/. Published April 2023;14(4):364–395. Accessed 29 January 2024. doi: 10.4239/wjd.v14.i4.364.
Jiang M, Wang X, Wang P, Peng W, Zhang B, Guo L. Inhibitor of RAGE and glucose‑induced inflammation in bone marrow mesenchymal stem cells: Effect and mechanism of action. Molecular Medicine Reports. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453676/. Published October 2020;22(4):3255–3262. Accessed 29 January 2024. doi: 10.3892/mmr.2020.11422.
Yehualashet AS. Toll-like Receptors as a Potential Drug Target for Diabetes Mellitus and Diabetes-associated Complications. Diabetes Metab Syndr Obes. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724365/. Published December 2020;13:4763–4777. Accessed 29 January 2024. doi: 10.2147/DMSO.S274844.
Suryavanshi SV, Kulkarni YA. NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front Pharmacol. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681994/. Published November 2017;8:798. Accessed 29 January. doi: 10.3389/fphar.2017.00798.
Zhang J. Growth factors in the pathogenesis of diabetic foot ulcers. Front Biosci. https://pubmed.ncbi.nlm.nih.gov/28930549/. Published 2018;23(1):310–317. Accessed 29 January 2024. doi: 10.2741/4593.
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, et al. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci. https://www.mdpi.com/1422-0067/24/5/4607. February 2023;24(5):4607. Accessed 29 January 2024. doi: https://doi.org/10.3390/ijms24054607.
Published
How to Cite
Issue
Section
Copyright (c) 2024 MAHARANI RETNA DUHITA, RETNO SUSILOWATI, SITI QURROTUL AINI, RAHMI ANNISA
This work is licensed under a Creative Commons Attribution 4.0 International License.