3D PRINTING IN THE PHARMACEUTICAL INDUSTRY: A SPECIAL CONSIDERATION ON MEDICAL DEVICE AND ITS APPLICATIONS

Authors

  • VIVEKANANDAN ELANGO Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0009-0908-5294
  • MURUGAPPAN M Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0003-3062-6568
  • KARTHIKEYAN VETRIVEL Department of Pharmaceutical Regulator Affairs, JSS College Of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0009-7443-8252
  • YUSUF M Department of Pharmaceutical Regulator Affairs, JSS College Of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0003-8264-2495
  • KSHITIJA DILIP NIKAM Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52354

Keywords:

3D printing, Medical devices, Pharmaceutical industry, Regulatory compliance, Personalized medicine, Additive manufacturing

Abstract

3 Dimensional (3D) printing has seemed to be the technology of radical development for the pharmaceutical industry, particularly in medical device manufacturing. The current review elaborates on the applications of 3D printing, challenges, and potentials in pharmaceutical medical devices. The technology allows for complicated personalized devices with accuracy and cost-effectiveness as never before, bringing in the key applications for this technology in the fields of prostheses, orthoses, surgical guides, audiology devices, and bioresorbable implants. It brings along customization, better pre-operative planning, and new drug delivery systems, but there are quality control and regulatory challenges to be faced: material selection, process validation, sterilization, and scalability. In view of this upcoming technology, the regulatory bodies are having to update their guidelines to ensure continued safety and efficacy. On the road ahead, with artificial intelligence, nanotechnology, and 4 Dimensional (4D) printing, future developments could make sophisticated medical equipment and change the management and outcome of diseases. While 3D printing opens up newer routes of innovation in the pharmaceutical industry, there are major concerns on issues of scalability and regulatory matters. This technology will thus make a significant impact on healthcare delivery through these coming decades, with changes in the global research and regulatory landscapes.

Downloads

Download data is not yet available.

References

Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges. Pharm Res. 2016 Aug;33(8):1817-32. doi: 10.1007/s11095-016-1933-1. Epub 2016 May 18. PMID: 27194002.

Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm. 2016 Feb 29;499(1-2):376-394. doi: 10.1016/j.ijpharm.2015.12.071. Epub 2016 Jan 3. PMID: 26757150.

Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D Printing in Pharmaceutical and Medical Applications - Recent Achievements and Challenges. Pharm Res. 2018 Jul 11;35(9):176. doi: 10.1007/s11095-018-2454-x. PMID: 29998405; PMCID: PMC6061505.

Khoo ZX, Teoh JE, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping. 2015 Jul 3;10(3):103-22. doi:10.1080/17452759.2015.1097054

Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017 Jan 1;108:39-50. doi: 10.1016/j.addr.2016.03.001. Epub 2016 Mar 18. PMID: 27001902.

Sandler N, Preis M. Printed Drug-Delivery Systems for Improved Patient Treatment. Trends Pharmacol Sci. 2016 Dec;37(12):1070-1080. doi: 10.1016/j.tips.2016.10.002. Epub 2016 Oct 27. Erratum in: Trends Pharmacol Sci. 2017 Mar;38(3):317. doi: 10.1016/j.tips.2017.01.002. PMID: 27992318.

Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015 Mar 1;9:4. doi: 10.1186/s13036-015-0001-4. PMID: 25866560; PMCID: PMC4392469.

Nulty J, Freeman FE, Browe DC, Burdis R, Ahern DP, Pitacco P, Lee YB, Alsberg E, Kelly DJ. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021 May;126:154-169. doi: 10.1016/j.actbio.2021.03.003. Epub 2021 Mar 8. PMID: 33705989.

Feng C, Zhang M, Bhandari B. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review. Crit Rev Food Sci Nutr. 2019;59(19):3074-3081. doi: 10.1080/10408398.2018.1481823. Epub 2018 Jun 20. PMID: 29856675.

Shen YW, Tsai YS, Hsu JT, Shie MY, Huang HL, Fuh LJ. Biomechanical Analyses of Porous Designs of 3D-Printed Titanium Implant for Mandibular Segmental Osteotomy Defects. Materials (Basel). 2022 Jan 13;15(2):576. doi: 10.3390/ma15020576. PMID: 35057294; PMCID: PMC8779878.

Li KHC, Kui C, Lee EKM, Ho CS, Wong SH, Wu W, Wong WT, Voll J, Li G, Liu T, Yan B, Chan J, Tse G, Keenan ID. The role of 3D printing in anatomy education and surgical training: A narrative review. MedEdPublish (2016). 2017 Jun 6;6:92. doi: 10.15694/mep.2017.000092. PMID: 38406430; PMCID: PMC10885259.

Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014 May 21;26(19):3124-30. doi: 10.1002/adma.201305506. Epub 2014 Feb 18. PMID: 24550124.

Madla CM, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. 3D printing technologies, implementation and regulation: An overview. 3D printing of pharmaceuticals. 2018:21-40. doi:10.1007/978-3-319-90755-0_2

Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008 Jul;29(20):2941-53. doi: 10.1016/j.biomaterials.2008.04.023. Epub 2008 Apr 28. PMID: 18440630.

Zhou LY, Fu J, He Y. A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials. 2020 Jul;30(28):2000187. Doi: 10.1002/adfm.202000187

Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, Weatherwax KJ. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices. Clin Transl Sci. 2015 Oct;8(5):594-600. doi: 10.1111/cts.12315. Epub 2015 Aug 3. PMID: 26243449; PMCID: PMC4626249.

Zadpoor AA, Malda J. Additive Manufacturing of Biomaterials, Tissues, and Organs. Ann Biomed Eng. 2017 Jan;45(1):1-11. doi: 10.1007/s10439-016-1719-y. PMID: 27632024.

Tappa K, Jammalamadaka U. Novel Biomaterials Used in Medical 3D Printing Techniques. J FunctBiomater. 2018 Feb 7;9(1):17. doi: 10.3390/jfb9010017. PMID: 29414913; PMCID: PMC5872103.

Javaid M, Haleem A. Additive manufacturing applications in medical cases: A literature based review. Alexandria Journal of Medicine. 2018;54(4):411-22.

Wu D, Spanou A, Diez-Escudero A, Persson C. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J Mech Behav Biomed Mater. 2020 Mar;103:103608. doi: 10.1016/j.jmbbm.2019.103608. Epub 2019 Dec 28. PMID: 32090935.

Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in polymer science. 2010 Oct 1;35(10):1217-56.

Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001 May;55(2):141-50. doi: 10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.0.co;2-j. PMID: 11255165.

Rahim TT, Abdullah AM, Akil HM, Mohamad D, Rajion ZA. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polymer Letters. 2017 Dec 1;11(12):963-82.

Pietrzak WS, Eppley BL. Resorbable polymer fixation for craniomaxillofacial surgery: development and engineering paradigms. J Craniofac Surg. 2000 Nov;11(6):575-85. doi: 10.1097/00001665-200011060-00011. PMID: 11314499.

Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. Int J Mol Sci. 2015 Jul 3;16(7):15118-35. doi: 10.3390/ijms160715118. PMID: 26151846; PMCID: PMC4519890.

Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010 Jul;6(7):2467-76. doi: 10.1016/j.actbio.2010.02.002. Epub 2010 Feb 8. PMID: 20144914; PMCID: PMC2874084.

Alaboodi AS, Sivasankaran S. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes. 2018 Oct 1;35:479-91.

El Magri A, Vanaei S, Vaudreuil S. An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Performance Polymers. 2021 Oct;33(8):862-80.

Mukhtarkhanov M, Perveen A, Talamona D. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines (Basel). 2020 Oct 19;11(10):946. doi: 10.3390/mi11100946. PMID: 33086736; PMCID: PMC7589843.

Shahrubudin N, Lee TC, Ramlan RJ. An overview on 3D printing technology: Technological, materials, and applications. Procedia manufacturing. 2019 Jan 1;35:1286-96.

RAJORA A, KUMAR R, SINGH R, SHARMA S, KAPOOR S, MISHRA A. 3D PRINTING: A REVIEW ON THE TRANSFORMATION OF ADDITIVE MANUFACTURING. Int J App Pharm. 2022 Jul;14(4):35-47.doi: https://doi.org/10.22159/ijap.2022v14i4.44597

Couto DS, Perez-Breva L, Cooney CL. Regenerative medicine: learning from past examples. Tissue Eng Part A. 2012 Nov;18(21-22):2386-93. doi: 10.1089/ten.TEA.2011.0639. Epub 2012 Jul 25. PMID: 22697402.

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008 Nov;26(11):1261-8. doi: 10.1038/nbt.1504. PMID: 18997767; PMCID: PMC2700785.

Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018 Feb;243(3):213-221. doi: 10.1177/1535370217750088. PMID: 29405771; PMCID: PMC5813875.

Mitra A, Dey B. Chitosan microspheres in novel drug delivery systems. Indian J Pharm Sci. 2011 Jul;73(4):355-66. doi: 10.4103/0250-474X.95607. PMID: 22707817; PMCID: PMC3374549.

Majumder S, Mondal T, Deen MJ. Wearable Sensors for Remote Health Monitoring. Sensors (Basel). 2017 Jan 12;17(1):130. doi: 10.3390/s17010130. PMID: 28085085; PMCID: PMC5298703.

Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014 Oct;39(10):704-11. PMID: 25336867; PMCID: PMC4189697.

Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016 Apr 30;503(1-2):207-12. doi: 10.1016/j.ijpharm.2016.03.016. Epub 2016 Mar 11. PMID: 26976500.

Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018 Aug;23(8):1547-1555. doi: 10.1016/j.drudis.2018.05.025. Epub 2018 May 24. PMID: 29803932.

Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products - the FDA perspective. 3D Print Med. 2016;2:1. doi: 10.1186/s41205-016-0005-9. Epub 2016 May 18. PMID: 29974058; PMCID: PMC6027614.

Choo YJ, Boudier-Revéret M, Chang MC. 3D printing technology applied to orthosis manufacturing: narrative review. Ann Palliat Med. 2020 Nov;9(6):4262-4270. doi: 10.21037/apm-20-1185. Epub 2020 Sep 24. PMID: 33040564.

Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016 Oct 21;15(1):115. doi: 10.1186/s12938-016-0236-4. PMID: 27769304; PMCID: PMC5073919.

Thienpont E, Schwab PE, Fennema P. A systematic review and meta-analysis of patient-specific instrumentation for improving alignment of the components in total knee replacement. Bone Joint J. 2014 Aug;96-B(8):1052-61. doi: 10.1302/0301-620X.96B8.33747. PMID: 25086121.

Sandström CG. The non-disruptive emergence of an ecosystem for 3D Printing—Insights from the hearing aid industry's transition 1989–2008. Technological Forecasting and Social Change. 2016 Jan 1;102:160-8.

Jammalamadaka U, Tappa K. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J FunctBiomater. 2018 Mar 1;9(1):22. doi: 10.3390/jfb9010022. PMID: 29494503; PMCID: PMC5872108.

Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014 Jun 2;5:3935. doi: 10.1038/ncomms4935. PMID: 24887553; PMCID: PMC4059935.

3D Printing of Medical Devices; 2020. Available from: https://www.fda.gov/medical-devices/products-and-medical-procedures

FDA Monkeypox Response; 2022. Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/fda-mpox-response

FDA’s Role in 3D Printing; 2017. Available from: https://www.fda.gov/medical-devices/3d-printing-medical-devices/fdas-role-3d-printing

India’s New Medical Devices Rules; 2017. Available from: https://www.mpo-mag.com/issues/2018-04-01/viewfeatures/indias-new-medical-devices-rules

. Classify Your Medical Device;2020. Available from: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device

FDA.Premarket Notification 510(k) Available from:https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k

FDA. Premarket Approval (PMA). Available from:https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-approval-pma

FDA. Humanitarian Device Exemption. Available from:https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/humanitarian-device-exemption

FDA. De Novo Classification Request. Available from: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/de-novo-classification-request

FDA. Investigational Device Exemption (IDE). Available from: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/investigational-device-exemption-ide

Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D Printing Pharmaceuticals: Drug Development to Frontline Care. Trends Pharmacol Sci. 2018 May;39(5):440-451. doi: 10.1016/j.tips.2018.02.006. Epub 2018 Mar 11. PMID: 29534837.

Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018 Sep 5;548(1):586-596. doi: 10.1016/j.ijpharm.2018.07.024. Epub 2018 Jul 6. PMID: 30033380.

Kjar A, Huang Y. Application of Micro-Scale 3D Printing in Pharmaceutics. Pharmaceutics. 2019 Aug 3;11(8):390. doi: 10.3390/pharmaceutics11080390. PMID: 31382565; PMCID: PMC6723578.

Lamichhane S, Bashyal S, Keum T, Noh G, Seo JE, Bastola R, Choi J, Sohn DH, Lee S. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharm Sci. 2019 Sep;14(5):465-479. doi: 10.1016/j.ajps.2018.11.008. Epub 2019 Feb 14. PMID: 32104475; PMCID: PMC7032174.

Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel). 2023 Nov 2;15(21):4306. doi: 10.3390/polym15214306. PMID: 37959986; PMCID: PMC10647997.

Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech. 2023 Nov 14;24(8):228. doi: 10.1208/s12249-023-02682-w. PMID: 37964180.

Rojek I, Mikołajewski D, Dostatni E, Kopowski J. Specificity of 3D printing and AI-based optimization of medical devices using the example of a group of exoskeletons. Applied Sciences. 2023 Jan 12;13(2):1060.

Park JJ, Tiefenbach J, Demetriades AK. The role of artificial intelligence in surgical simulation. Front Med Technol. 2022 Dec 14;4:1076755. doi: 10.3389/fmedt.2022.1076755. PMID: 36590155; PMCID: PMC9794840.

Das M, Ambekar RS, Panda SK, Chakraborty S, Tiwary CS. 2D nanomaterials in 3D/4D-printed biomedical devices. Journal of Materials Research. 2021 Oct 14;36:4024-50.

dos Santos J, de Oliveira RS, de Oliveira TV, Velho MC, Konrad MV, da Silva GS, Deon M, Beck RC. 3D printing and nanotechnology: a multiscale alliance in personalized medicine. Advanced functional materials. 2021 Apr;31(16):2009691.

Pingale P, Dawre S, Dhapte-Pawar V, Dhas N, Rajput A. Advances in 4D printing: from simulation to simulation. Drug Deliv Transl Res. 2023 Jan;13(1):164-188. doi: 10.1007/s13346-022-01200-y. Epub 2022 Jun 24. PMID: 35751000.

Ahmed A, Arya S, Gupta V, Furukawa H, Khosla A. 4D printing: Fundamentals, materials, applications and challenges. Polymer. 2021 Jul 16;228:123926.

Shirazi SF, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HS, Adib Kadri N, Osman NA. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015 May 5;16(3):033502. doi: 10.1088/1468-6996/16/3/033502. PMID: 27877783; PMCID: PMC5099820.

An J, Chua CK, Mironov V. A perspective on 4D bioprinting. International Journal of Bioprinting. 2016;2(1).

PRINTING TECHNIQUE: A REVIEW ON THE APPLICATIONS IN PHARMACEUTICAL MANUFACTURING. Int J Pharm Pharm Sci. 2024 Apr;16(4):11-7 doi: https://doi.org/10.22159/ijpps.2024v16i4.50139

PUND A, MAGAR M, AHIRRAO Y, CHAUDHARI A, AMRITKAR A. 3D PRINTING TECHNOLOGY: A CUSTOMIZED ADVANCED DRUG DELIVERY. Asian J Pharm Clin Res. 2022 Aug;15(8):23-3.doi: https://doi.org/10.22159/ajpcr.2022.v15i8.45136

Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018 Jun 15;544(2):415-424. doi: 10.1016/j.ijpharm.2018.01.031. Epub 2018 Jan 20. PMID: 29355656.

Published

05-11-2024

How to Cite

ELANGO, V., M, M., VETRIVEL, K., M, Y., & NIKAM, K. D. (2024). 3D PRINTING IN THE PHARMACEUTICAL INDUSTRY: A SPECIAL CONSIDERATION ON MEDICAL DEVICE AND ITS APPLICATIONS. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.52354

Issue

Section

Review Article(s)

Most read articles by the same author(s)