AQUASOMES UNVEILED: TRANSFORMING DRUG DELIVERY WITH CUTTING-EDGE THERAPEUTIC CARRIERS AND RECENT BREAKTHROUGHS

Authors

  • VIJAYARAGHAVAN KRISHNAN Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India
  • VIVEKANANDAN ELANGO Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0009-0908-5294
  • SAM HARRISON SAM JENKINSON Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0006-8721-1987
  • BALAGEE MUTHUKUMAR Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India
  • SANJAY RAJA DHANRAJ Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India
  • DHANDAPANI NAGASAMY VENKATESH Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-5361-3586

DOI:

https://doi.org/10.22159/ijap.2024v16i5.50936

Keywords:

Aquasomes, Self-assembled nano-particulate carrier system, Colloidal ceramic carbohydrate composites, Drug delivery, Hemoglobin transport

Abstract

The study presented herein explores the groundbreaking utilization of aquasomes, which are sophisticated colloidal ceramic carbohydrate composites, as carriers for the transportation of hemoglobin. These aquasomes undergo strategic surface modification with carbohydrates, leading to the development of a protective molecular layer characterized by a resilient glassy texture. This innovative approach effectively safeguards therapeutic proteins by forming a molecular shield, thus mitigating potential structural damage during transit. Crucially, aquasomes demonstrate remarkable efficacy in preserving encapsulated drugs within aqueous environments. This is achieved by shielding the drugs from the adverse effects of fluctuating pH levels and temperature variations, which could otherwise induce denaturation. Importantly, the protective capability of aquasomes remains intact, exhibiting no alterations in swelling or porosity despite changes in external conditions.

Furthermore, this article sheds light on recent breakthroughs in aquasomes research, highlighting their diverse applications and promising future avenues. In particular, the focus is on the use of aquasomes for the transport of hemoglobin and therapeutic proteins, underscoring their potential transformative impact in the field of biomedical sciences. The incorporation of aquasomes as carriers for hemoglobin transportation represents a significant advancement in drug delivery technology. By harnessing the unique properties of aquasomes, researchers have opened up new possibilities for the safe and efficient transport of therapeutic proteins, offering hope for the development of novel treatments for a range of medical conditions. Overall, this study underscores the immense potential of aquasomes in revolutionizing biomedical research and improving patient outcomes.

Downloads

Download data is not yet available.

References

Yadav AR, Mohite SK. Aquasomes as a self-assembling nanobiopharmaceutical carrier system for bioactive molecules. Research Journal of Topical and Cosmetic Sciences. 2020;11(2):89-94. doi: 10.5958/2321-5844.2020.00016.3.

Vyas SP, Khar RK. Introduction to parenteral drug delivery. In: Vyas SP, Khar RK. editors targeted and controlled drug delivery. New Delhi CBS Publishers and Distributors; 2002. p. 3-37.

Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm. 2000;26(4):459-63. doi: 10.1081/DDC-100101255, PMID 10769790.

Kim IS, Kim SH. Development of a polymeric nanoparticulate drug delivery system in vitro characterization of nanoparticles based on sugar-containing conjugates. Int J Pharm. 2002;245(1-2):67-73. doi: 10.1016/S0378-5173(02)00336-8, PMID 12270243.

Kossovsky N, Gelman A, Rajguru S, Nguyen R, Sponsler E, Hnatyszyn HJ. Control of molecular polymorphisms by a structured carbohydrate ceramic delivery vehicle aquasomes. J Control Release. 1996;39(2-3):383-8. doi: 10.1016/01683659(95)00169-7.

Arnone A, Perutz MF. Structure of inositol hexaphosphate human deoxyhaemoglobin complex. Nature. 1974;249(452):34-6. doi: 10.1038/249034a0, PMID 4364353.

Bovey FA. Reactions of solid polymers treatise on solid state chemistry. React Solids Boston MA. 1976;4:661-4. doi: 10.1016/j.progsolidstchem.2007.02.002.

Kumar JM, Kumar VV, Mounica R, Bolla SP, Pavani M. Aquasomes the best carriers for protein and peptide delivery. Asian J Pharm Res Dev. 2013;1(4):16-23. doi: 10.5281/zenodo.1054693.

Rojas Oviedo I, Salazar Lopez RA, Reyes Gasga J, Quirino Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur J Pharm Sci. 2007;32(3):223-30. doi: 10.1016/j.ejps.2007.07.008, PMID 17905573.

Kossovsky N, Millet D, Gelman LA, Sponsler ED, Hnatyszyn HJ. Self-assembling nanostructures. Mater Res Soc Bull. 1993;12(2):78-81. doi: 10.22377/ajpv12i02.2369.

Chien YW. Novel drug delivery systems. 2nd ed. New York Marcel Dekker Inc. 2007. p. 631-47.

Mandal S, Mandal M. Current status and future prospects of new drug delivery system. Pharma Times. 2010;42(4):13-7.

Sahoo CK, Ramana DV, Satynarayan K, Mohanty D. Drug delivery through aquasomes. J Pharm Adv Res. 2018;1(3):156-62.

Banerjee S, Sen KK. Preparation and evaluation of surface-modified nanoparticles of calcium phosphate as extract carrier. Int J App Pharm. 2020;12(4):248-57. doi: 10.22159/ijap.2020v12i4.38126.

Kossovsky N, Gelman A, Rajguru S, Nguyen R, Sponsler E, Hnatyszyn HJ. Control of molecular polymorphisms by a structured carbohydrate/ceramic delivery vehicle-aquasomes. Journal of Controlled Release. 1996;39(2-3):383-8. doi: 10.1016/0168-3659(95)00169-7.

Arpita C, Aquasome A. Brief review. International Journal of Innovative Pharmaceutical Sciences and Research. 2014;2(6):1222-30. doi: 10.5281/zenodo.1054693.

Kommineni S, Ahmad S, Vengala P, Subramanyam CV. Sugar coated ceramic nanocarriers for the oral delivery of hydrophobic drugs formulation optimization and evaluation. Drug Dev Ind Pharm. 2012;38(5):577-86. doi: 10.3109/03639045.2011.617884, PMID 21961937.

Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155(3):344-57. doi: 10.1016/j.jconrel.2011.06.004, PMID 21723891.

Kutlehria A, Kaushik P, Sharma S, Kaur A. Aquasomes as a carrier system for oral delivery of bromelain. Int Res J Pharm. 2018;9(8):123-9. doi: 10.7897/22308407.098177.

Patel JK, Patel KN, Patel HK, Patel BA, Patel PA. Aquasomes a self assembling nanobiopharmaceutical carrier system for bio-active molecules a review. IJPRS. 2012;1(1):11-21. doi: 10.31638/IJPRS.V1.I1.00012.

Goyal AK, Khatri K, Mishra N, Mehta A, Vaidya B, Tiwari S. Aquasomes a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm. 2008;34(12):1297-305. doi: 10.1080/03639040802071661, PMID 18850363.

Sonawane TD, Mujoriya RZ, Nandre HN. Review on x-ray powder diffraction technique. Res J Pharm Dosage Forms Technol. 2016;8(4). doi: 10.5958/09754377.2016.00040.9.

Rojas Oviedo I, Salazar Lopez RA, Reyes Gasga J, Quirino Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur J Pharm Sci. 2007;32(3):223-30. doi: 10.1016/j.ejps.2007.07.008, PMID 17905573.

Damera DP, Kaja S, Janardhanam LS, Alim SK, Venuganti VV, Nag A. Synthesis detailed characterization and dual drug delivery application of BSA loaded aquasomes. ACS Appl Bio Mater. 2019;2(10):4471-84. doi: 10.1021/acsabm.9b00635, PMID 35021407.

Kulkarni S, Prabhakar B, Shende P. Aquasomes advanced vesicular based nanocarrier systems. Curr Pharm Des. 2022;28(29):2404-14. doi: 10.2174/1381612828666220728112741, PMID 35909274.

Rathore P, Duggal S, Aquasomes SG. A promising nanobiopharmaceutical drug delivery system for proteins and peptides. ChemInform. 2013;44(17):1-2. doi: 10.1016/j.nano.2009.11.002.

Umashankar MS, Sachdeva RK, Gulati M. Aquasomes a promising carrier for peptides and protein delivery. Nanomedicine. 2010;6(3):419-26. doi: 10.1016/j.nano.2009.11.002, PMID 19931422.

Vengala P, Aslam S, Subrahmanyam CV. Development and in vitro evaluation of ceramic nanoparticles of piroxicam. Lat Am J Pharm. 2013;32:1124-30.

Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm. 2001;51(2):93-109. doi: 10.1016/s0939-6411(00)00144-2, PMID 11226816.

Patel S, Aundhia C, Seth A, Shah N, Pandya K, Patel D. Aquasomes a novel approach in drug carrier system. Eur J Pharm Med Res. 2016;3(9):198-201. doi: 10.55522/jmpas.v11i5.4110.

Cherian AK, Rana AC, Jain SK. Self assembled carbohydrate stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm. 2000;26(4):459-63. doi: 10.1081/ddc-100101255, PMID 10769790.

Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel encapsulated chitosan coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm. 2008;34(2):181-8. doi: 10.1080/03639040701539479, PMID 18302037.

Chaudhary JS, Prajapati SK, Aquasomes GR. A new approach for delivering therapeutics an overview. Asian J Pharm. 2018;12(2):S419.

Khopade AJ, Khopade S, Jain NK. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer. Int J Pharm. 2002;241(1):145-54. doi: 10.1016/s0378-5173(02)00235-1, PMID 12086730.

Patel JK, Patel KN, Patel HK, Patel BA, Patel PA. Aquasomes a self assembling nanobiopharmaceutical carrier system for bio active molecules a review. IJPRS. 2012;1(1):11-21. doi: 10.31638/IJPRS.V1.I1.00012.

Rojas Oviedo I, Salazar Lopez RA, Reyes Gasga J, Quirino Barreda CT. Elaboration and structural analysis of aquasomes loaded with indomethacin. Eur J Pharm Sci. 2007;32(3):223-30. doi: 10.1016/j.ejps.2007.07.008, PMID 17905573.

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticle-based based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001, PMID 19782542.

Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel encapsulated chitosan coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm. 2008;34(2):181-8. doi: 10.1080/03639040701539479, PMID 18302037.

Onken JE, Greer PK, Calingaert B, Hale LP. Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clin Immunol. 2008;126(3):345-52. doi: 10.1016/j.clim.2007.11.002, PMID 18160345.

Medicine in development biotechnology pharmaceutical research and manufacturers of America. Washington DC; 2006.

Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ. Recurrent epithelial ovarian carcinoma a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19(14):3312-22. doi: 10.1200/JCO.2001.19.14.3312, PMID 11454878.

Asfour MH. Advanced trends in protein and peptide drug delivery A special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res. 2021;11(1):1-23. doi: 10.1007/s13346-020-00746-z, PMID 32337668.

Jain SS, Jagtap PS, Dand NM, Jadhav KR, Kadam VJ. Aquasomes a novel drug carrier. J Appl Pharm Sci. 2012;2(1):184-92.

Umashankar MS, Sachdeva RK, Gulati M. Aquasomes a promising carrier for peptides and protein delivery. Nanomedicine. 2010;6(3):419-26. doi: 10.1016/j.nano.2009.11.002, PMID 19931422.

Sitorus P, Nerdy N. Hepatoprotective activity of vernonia amygdalina leaf ethanolic extract in white rats induced by paracetamol. Asian J Pharm Clin Res. 2018;11(10):562-4. doi: 10.22159/ajpcr.2018.v11i10.29881.

Rajalingam D, Varadharajan R, Palani S. Evaluation of hepatoprotective and antioxidant effect of combretum albidum g don against CCL4 induced hepatotoxicity in rats. Int J Pharm Pharm Sci. 2016;8(9):218-23. doi: 10.22159/ijpps.2016.v8i9.13136.

Mushtaq A, Masoodi MH, Wali AF, Ganai BA. Multiple treatments of eremurus himalaicus extracts ameliorates carbon tetrachloride-induced liver injury in rats. Int J Pharm Pharm Sci. 2016;8(9):24-7. doi: 10.22159//ijpps.2016.v8i9.11237.

Nielson SS. Phenol sulfuric acid method for total carbohydrates. Food Science Text Series; 2010. p. 47-53.

Vyas SP, Khar RK. Introduction to parenteral drug delivery. In: Vyas SP, Khar RK. editors. Targeted and controlled drug delivery. New Delhi CBS publishers and distributors; 2002. p. 3-37.

Krishnan L, Sad S, Patel GB, Sprott GD. The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol. 2001;166(3):1885-93. doi: 10.4049/jimmunol.166.3.1885, PMID 11160236.

Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta. 1993;1146(2):157-68. doi: 10.1016/0005-2736(93)90351-y, PMID 8452853.

Arora S, Bisen G, Budhiraja R. Mucoadhesive and muco penetrating delivery systems for eradication of helicobacter pylori. Asian J Pharm. 2012;6(1). doi: 10.4103/0973-8398.100127.

Patel S. Ethosomes: a promising tool for transdermal delivery of drug. Latest Rev. 2007;5(2).

Gaspar MM, Boerman OC, Laverman P, Corvo ML, Storm G, Cruz ME. Enzymosomes with surface exposed superoxide dismutase in vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J Control Release. 2007;117(2):186-95. doi: 10.1016/j.jconrel.2006.10.018, PMID 17169460.

Singh P, Sihorkar V, Jaitely V, Kanaujia P, Vyas SP. Pilosebaceous unit: anatomical considerations and drug delivery opportunities. Ind J Pharmacol. 2000;32:269-81.

Wong B, Schmidt J, Zasadzinski J. Studying the in vivo behavior of the vesosome. Biophys J. 2009;96(3):451a-2a. doi: 10.1016/j.bpj.2008.12.2320.

Mushtaq A, Masoodi MH, Wali AF, Ganai BA. Multiple treatments of eremurus himalaicus extracts ameliorates carbon tetrachloride-induced liver injury in rats. Int J Pharm Pharm Sci. 2016;8(9):24-7. doi: 10.22159//ijpps.2016.v8i9.11237.

Published

07-09-2024

How to Cite

KRISHNAN, V., ELANGO, V., SAM JENKINSON, S. H., MUTHUKUMAR, B., DHANRAJ, S. R., & VENKATESH, D. N. (2024). AQUASOMES UNVEILED: TRANSFORMING DRUG DELIVERY WITH CUTTING-EDGE THERAPEUTIC CARRIERS AND RECENT BREAKTHROUGHS. International Journal of Applied Pharmaceutics, 16(5), 67–76. https://doi.org/10.22159/ijap.2024v16i5.50936

Issue

Section

Review Article(s)

Most read articles by the same author(s)