EMERGING TRENDS IN STIMULI-SENSITIVE DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW OF CLINICAL APPLICATIONS AND RECENT ADVANCEMENTS
DOI:
https://doi.org/10.22159/ijap.2023v15i6.48974Keywords:
Stimuli-sensitive drug delivery systems, Exogenous stimuli, Endogenous stimuli, Recent advancementsAbstract
The combination of fields such as applied physics, biology, computational modeling and analysis, pharmaceuticals, chemistry, optics, and material science study has been made easier for the rise of stimuli-sensitive drug delivery systems. This study aimed to overcome the shortcomings of conventional therapeutic approaches by concentrating on the most recent developments in stimuli-sensitive drug delivery systems, which are intended to accomplish the targeted release of drugs in specified areas. This review aims to provide an overview of stimuli-sensitive drug delivery systems and recent advancements between 2015 and 2023 by focusing on their ability to respond to exogenous and endogenous stimuli. In recent years, significant progress has been made in developing innovative stimuli-responsive drug delivery platforms that can trigger various external stimuli, such as light, temperature, magnetic fields, and ultrasound. These exogenous stimuli-responsive systems enable on-demand drug release at specific target sites, allowing for personalized and patient-centric treatment strategies. Notable breakthroughs include photoresponsive nanocarriers, thermosensitive hydrogels, and magnetic nanoparticles, all designed to respond to specific cues for controlled drug delivery.
Downloads
References
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306-23. doi: 10.7150/thno.14858, PMID 27375781.
Gupta M, Sharma V. Targeted drug delivery system a review. Res J Chem Sci. 2011;1:135-8.
Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1-3):151-70. doi: 10.1016/j.jbiotec.2004.06.007, PMID 15380654.
Elema Buzu. Stimuli-sensitive drug delivery systems: a review, scieniQ Publisher; 2020. https://www.researchgateresearchgate.net/publication/363095261.
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules. 2019;24(6):1117. doi: 10.3390/molecules24061117, PMID 30901827.
Chen K, Gou W, Wang X, Zeng C, Ge F, Dong Z. UV-cured fluoride-free polyurethane functionalized textile with pH-induced switchable superhydrophobicity and underwater superoleophobicity for controllable oil/water separation. ACS Sustainable Chem Eng. 2018 Oct 29;6(12):16616-28. doi: 10.1021/acssuschemeng.8b03851.
Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH-responsive polyurethane for the advancement of biomedical and drug delivery. Polymers. 2022;14(9):1672. doi: 10.3390/polym14091672, PMID 35566843.
Garcia Fernandez L, Mora Boza A, Reyes Ortega F. pH-responsive polymers: properties, synthesis, and applications. Smart Polym Appl. 2019:45-86. doi: 10.1016/B978-0-08-102416-4.00003-X.
Mu Yongxu, Gong L, Peng T, Yao J, Lin Z. Advances in pH-responsive drug delivery systems. OpenNano. 2021;5:(100031):2021.100031. doi: 10.1016/j.onano.2021.100031.
Mutalabisin MF, Chatterjee B, Jaffri JMd. PH responsive polymers in drug delivery. Res J Pharm Technol. 2018;11(11):5115-22. doi: 10.5958/0974-360X.2018.00934.4.
Abed HF, Abuwatfa WH, Husseini GA. Redox-responsive drug delivery systems: a chemical perspective. Nanomaterials (Basel). 2022;12(18):3183. doi: 10.3390/nano12183183, PMID 36144971.
Rao NV, Ko H, Lee J, Park JH. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol. 2018;6(6):110. doi: 10.3389/fbioe.2018.00110, PMID 30159310.
Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale. 2014;6(21):12273-86. doi: 10.1039/c4nr04249b, PMID 25251024.
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. ’Smart’ drug delivery: a window to future of translational medicine. Front Chem. 2022;10:1095598. doi: 10.3389/fchem.2022.1095598, PMID 36688039.
Uthaman S, Huh KM, Park IK. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res. 2018;22:22. doi: 10.1186/s40824-018-0132-z, PMID 30155269.
Fang JH, Lee YT, Chiang WH, Hu SH. Magneto-responsive virus-mimetic nanocapsules with dual heat-triggered sequential-infected multiple drug-delivery approach for combinatorial tumor therapy. Small. 2015;11(20):2417-28. doi: 10.1002/smll.201402969, PMID 25604032.
Antoniou AI, Giofre S, Seneci P, Passarella D, Pellegrino S. Stimulus-responsive liposomes for biomedical applications. Drug Discov Today. 2021;26(8):1794-824. doi: 10.1016/j.drudis.2021.05.010, PMID 34058372.
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart” drug delivery: a window to future of translational medicine. Front Chem. 2022;10:1095598. doi: 10.3389/fchem.2022.1095598, PMID 36688039.
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-responsive nanomedicines for disease diagnosis and treatment. Int J Mol Sci. 2020 Sep 2;21(17):6380. doi: 10.3390/ijms21176380, PMID 32887466.
Bordbar Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci. 2022;23(7):3665. doi: 10.3390/ijms23073665, PMID 35409025.
Choi SW, Zhang Y, Xia Y. A temperature-sensitive drug release system based on phase-change materials. Angew Chem Int Ed Engl. 2010;49(43):7904-8. doi: 10.1002/anie.201004057, PMID 20839209.
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149-73. doi: 10.1146/annurev-chembioeng-073009-100847, PMID 22432577.
Shao P, Wang B, Wang Y, Li J, Zhang Y. The application of thermosensitive nanocarriers in controlled drug delivery. Journal of Nanomaterials. 2011;2011:1-12. doi: 10.1155/2011/389640.
Wei H, Zhang X, Cheng C, Cheng SX, Zhuo RX. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPA am for controlled drug delivery. Biomaterials. 2007;28(1):99-107. doi: 10.1016/j.biomaterials.2006.08.030, PMID 16959312.
Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butyl methacrylate). J Control Release. 1999;62(1-2):115-27. doi: 10.1016/S0168-3659(99)00029-2.
Ieiri I, Takane H, Hirota T, Otsubo K, Higuchi S. Genetic polymorphisms of drug transporters: pharmacokinetic and pharmacodynamic consequences in pharmacotherapy. Expert Opin Drug Metab Toxicol. 2006;2(5):651-74. doi: 10.1517/17425255.2.5.651, PMID 17014387.
Choi C, Chae SY, Nah J. Thermosensitive poly(N-isopropyl acrylamide)-b-poly(ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer Polymer. 2006;47(13):4571-80. doi: 10.1016/j.polymer.2006.05.011.
Cheng C, Wei H, Shi BX, Cheng H, Li C, Gu ZW. Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials. 2008;29(4):497-505. doi: 10.1016/j.biomaterials.2007.10.004, PMID 17959241.
Soga O, Van Nostrum CF, Fens M, Rijcken CJ, Schiffelers RM, Storm G. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release. 2005;103(2):341-53. doi: 10.1016/j.jconrel.2004.12.009, PMID 15763618.
Bustamante Torres M, Romero Fierro D, Arcentales Vera B, Palomino K, Magana H, Bucio E. Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels. 2021;7(4):182. doi: 10.3390/gels7040182, PMID 34842654.
Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 2011;63(14-15):1257-66. doi: 10.1016/j.addr.2011.06.009.
Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012 Dec;7(1-4):9. doi: 10.1007/s13758-011-0009-3, PMID 22589052.
Nehls EM, Rosales AM, Anseth KS. Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers. J Mater Chem B. 2016;4(6):1035-9. doi: 10.1039/C5TB02004B, PMID 27127630.
Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(6):e1571. doi: 10.1002/wnan.1571, PMID 31241251.
O’Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93(1-3):212-55. doi: 10.1016/j.pbiomolbio.2006.07.010, PMID 16934858.
Al-Jamal KT, Bai J, Wang JT-W, Protti A, Southern P, Bogart L. Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett. 2016;16(9):5652-60. doi: 10.1021/acs.nanolett.6b02261, PMID 27541372.
Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release. 2009;138(3):268-76. doi: 10.1016/j.jconrel.2009.05.026, PMID 19477208.
Abdo GG, Zagho MM, Khalil A. Recent advances in stimuli-responsive drug release and targeting concepts using mesoporous silica nanoparticles. Emergent Mater. 2020;3(3):407-25. doi: 10.1007/s42247-020-00109-x.
Bhatnagar S, Kwan JJ, Shah AR, Coussios CC, Carlisle RC. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. J Control Release. 2016;238:22-30. doi: 10.1016/j.jconrel.2016.07.016, PMID 27417040.
Hart FX, Palisano JR. The application of electric fields in biology and medicine. Electric Field; 2018. doi: 10.5772/intechopen.71683.
Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res. 2021;11(4):1323-39. doi: 10.1007/s13346-021-00963-0, PMID 33761101.
SG, SG, SS, KG, OB, Smart VT. Polymers and their applications: a review. Int J Curr Pharm Rev Res. 2017;8(03). doi: 10.25258/ijcprr.v8i03.9220.
Kolosnjaj Tabi J, Gibot L, Fourquaux I, Golzio M, Rols MP. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev. 2019;138:56-67. doi: 10.1016/j.addr.2018.10.017, PMID 30414494.
Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm. 2021;602:120591. doi: 10.1016/j.ijpharm.2021.120591, PMID 33845152.
Seyfoddin A, Chan A, Chen WT, Rupenthal ID, Waterhouse GI, Svirskis D. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur J Pharm Biopharm. 2015;94:419-26. doi: 10.1016/j.ejpb.2015.06.018, PMID 26141345.
Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J. Poly(N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers. 2020;12(3):580. doi: 10.3390/polym12030580, PMID 32150904.
Luckanagul JA, Pitakchatwong C, Ratnatilaka Na Bhuket P, Muangnoi C, Rojsitthisak P, Chirachanchai S. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym. 2018;1(181):1119-27. doi: 10.1016/j.carbpol.2017.11.027.
Parvathy R. Chandran and N, Sandhyarani. An electric field responsive drug delivery system Based on chitosan–gold nanocomposites for site-specific and controlled delivery of 5-fluorouracil. RSC Advances; 2014. doi: 10.1039/c4ra07551j.
Zhang P, Lu T, Xia X, Wu L, Shao L, Zhou J. How biomimetic amino modified mesoporous silica xerogel regulates loading and in vitro sustained delivery of levorotary ofloxacin. Mater Sci Eng C Mater Biol Appl. 2020;107:110266. doi: 10.1016/j.msec.2019.110266, PMID 31761238.
Svanstrom A, Rosendahl J, Salerno S, Leiva MC, Gregersson P, Berglin M. Optimized alginate-based 3D printed scaffolds as a model of patient-derived breast cancer microenvironments in drug discovery. Biomed Mater. 2021;16(4). doi: 10.1088/1748-605X/ac0451, PMID 34030145.
Li Junfei, Xie Y, Zou X, Li Zhengze, Liu W, Liu G. Ultrasonic/electrical dual stimulation response nanocomposite bio electret for controlled precision drug release. Materials Today Bio. 2023. doi: 10.1016/j.mtbio.2023.100665.
Entzian K, Aigner A. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics. 2021 Jul 26;13(8):1135. doi: 10.3390/pharmaceutics13081135, PMID 34452096.
Liang J, Liu J, Jin X, Yao S, Chen B, Huang Q. Versatile nanoplatforms loaded with doxorubicin and graphene quantum dots/methylene blue for drug delivery and chemo photothermal/photodynamic synergetic cancer therapy. ACS Appl Bio Mater. 2020;3(10):7122-32. doi: 10.1021/acsabm.0c00942, PMID 35019372.
Entzian K, Aigner A. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics. 2021;13(8):1135. doi: 10.3390/pharmaceutics13081135, PMID 34452096.
Indermun S, Choonara YE, Kumar P, du Toit LC, Modi G, Luttge R. An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery. Int J Pharm. 2014;462(1-2):52-65. doi: 10.1016/j.ijpharm.2013.11.014, PMID 24257244.
di Luca M, Vittorio O, Cirillo G, Curcio M, Czuban M, Voli F. Electro-responsive graphene oxide hydrogels for skin bandages: the outcome of gelatin and trypsin immobilization. Int J Pharm. 2018;546(1-2):50-60. doi: 10.1016/j.ijpharm.2018.05.027, PMID 29758346.
Choonara S, Yahya Kumar P. An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM). Drug Deliv. 2020;462(1-2):52-65.
Zhang B, Molino PJ, Harris AR, Yue Z, Moulton SE, Wallace GG. Conductive and protein-resistant polypyrrole films for dexamethasone delivery. J Mater Chem B. 2016;4(15):2570-7. doi: 10.1039/C5TB00574D, PMID 32263280.
Curcio M, Spizzirri UG, Cirillo G, Vittorio O, Picci N, Nicoletta FP. On-demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Adv. 2015;5(56):44902-11. doi: 10.1039/C5RA05484B.
Sauraj, Vinay Kumar, Kumar B, Priyadarshi R, Deeba F, Kulshreshtha A. Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020;107:110356. doi: 10.1016/j.msec.2019.110356, PMID 31761247.
Oliveira RR, Carriao MS, Pacheco MT, Branquinho LC, de Souza ALR, Bakuzis AF. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Mater Sci Eng C Mater Biol Appl. 2018;92:547-53. doi: 10.1016/j.msec.2018.07.011, PMID 30184781.
Jardim KV, Palomec Garfias AFA, Chaker B, Bao JA, Marquez Beltran SNC. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetically controlled release of curcumin. Mater Sci Eng C. 2018;92:184-95. doi: 10.1016/j.msec.2018.06.039.
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(7):7. doi: 10.1038/s41392-017-0004-3, PMID 29560283.
Entzian K, Aigner A. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics. 2021;13(8):1135. doi: 10.3390/pharmaceutics13081135, PMID 34452096.
Radu ER, Semenescu A, Voicu SI. Recent advances in stimuli-responsive doxorubicin delivery systems for liver cancer therapy. Polymers (Basel). 2022;14(23):5249. doi: 10.3390/polym14235249, PMID 36501642.
Sood A, Gupta A, Bharadwaj R, Ranganath P, Silverman N, Agrawal G. Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr Polym. 2022;294:119833. doi: 10.1016/j.carbpol.2022.119833, PMID 35868778.
Published
How to Cite
Issue
Section
Copyright (c) 2023 THAMARAI SELVAN DHANDAPANI, VIJAYARAGHAVAN KRISHNAN, BALAGEE MUTHUKUMAR, VIVEKANANDAN ELANGO, SAKTHI SHANMUGA JEYANDAR LAKSHMANAN, SAM HARRISON SAM JENKINSON, DHANDAPANI NAGASAMY VENKATESH
This work is licensed under a Creative Commons Attribution 4.0 International License.