LITERATURE REVIEW: THE OMICS STUDY FOR DETERMINING BIOMARKERS IN HUMAN SERUM AND PLASMA WITH DIFFERENT COVID-19 SEVERITY
DOI:
https://doi.org/10.22159/ijap.2024v16s5.52474Keywords:
COVID-19, Severity, Serum, Plasma, OmicsAbstract
Objective: The severity of COVID-19 provides information on various stages of changes in the body's normal state in various parameters called biological markers (biomarkers) as the initial identification that facilitates management, selection, and total outcomes in therapy. These biomarkers were selected from the selection of samples that are often used in the advanced diagnosis of COVID-19, serum, and plasma. This study aims to determine what biomarkers are measured in serum and plasma samples of COVID-19 patients.
Methods: This literature review is classified as non-experimental, qualitative, and descriptive research. The inclusion criteria are the full-text journals published within the last two years regarding biomarkers in the serum and plasma of COVID-19 patients.
Results: Based on these criteria, 49 relevant articles were obtained. The results show that changes occur in the protein, lipid, and metabolite in serum and plasma by the omics approach. These alterations can be in the form of increasing or decreasing levels of each parameter determined through various analytical methods.
Conclusion: The biomarkers profile correlates with the severity of COVID-19 as well as with host cells
Downloads
References
Bloom JD, Chan YA, Baric RS, Bjorkman PJ, Cobey S, Deverman BE, et al. Investigate the origins of COVID-19. Science 2021;372:694. https://doi.org/10.1126/science.abj0016.
Karakike E, Giamarellos-Bourboulis EJ. Macrophage Activation-Like Syndrome: A Distinct Entity Leading to Early Death in Sepsis. Front Immunol 2019;10:55. https://doi.org/10.3389/fimmu.2019.00055.
Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol 2020;17:773–5. https://doi.org/10.1038/s41423-020-0474-z.
Kheir M, Saleem F, Wang C, Mann A, Chua J. Higher albumin levels on admission predict better prognosis in patients with confirmed COVID-19. PloS One 2021;16:e0248358. https://doi.org/10.1371/journal.pone.0248358.
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J Heart Lung Transplant 2020;39:405–7. https://doi.org/10.1016/j.healun.2020.03.012.
Griffin DO, Brennan-Rieder D, Ngo B, Kory P, Confalonieri M, Shapiro L, et al. The Importance of Understanding the Stages of COVID-19 in Treatment and Trials. AIDS Rev 2021;23:40–7. https://doi.org/10.24875/AIDSRev.200001261.
Wu J, Zhao M, Li C, Zhang Y, Wang DW. The SARS-CoV-2 induced targeted amino acid profiling in patients at hospitalized and convalescent stage. Biosci Rep 2021;41:BSR20204201. https://doi.org/10.1042/BSR20204201.
Ticinesi A, Nouvenne A, Prati B, Guida L, Parise A, Cerundolo N, et al. The Clinical Significance of Procalcitonin Elevation in Patients over 75 Years Old Admitted for COVID-19 Pneumonia. Mediators Inflamm 2021;2021:5593806. https://doi.org/10.1155/2021/5593806.
McReynolds CB, Cortes-Puch I, Ravindran R, Khan IH, Hammock BG, Shih P-AB, et al. Plasma Linoleate Diols Are Potential Biomarkers for Severe COVID-19 Infections. Front Physiol 2021;12:663869. https://doi.org/10.3389/fphys.2021.663869.
Saadh MJ. SARS-COV-2 3CL-PROTEASE INHIBITORS AS ANTIVIRAL AGENT AGAINST COVID-19. Int J Appl Pharm 2022:18–20. https://doi.org/10.22159/ijap.2022v14i6.46015.
Singh S, MONIKA, Mazumder R, Mazumder A. REVIEW OF SARS-CORONAVIRUS-2 REPERCUSSIONS ON THYROID GLAND IN THE CONTEXT OF HYPERTHYROIDISM. Int J Appl Pharm 2023:17–26. https://doi.org/10.22159/ijap.2023v15i5.47937.
Suklan J, Cheaveau J, Hill S, Urwin SG, Green K, Winter A, et al. Utility of Routine Laboratory Biomarkers to Detect COVID-19: A Systematic Review and Meta-Analysis. Viruses 2021;13:803. https://doi.org/10.3390/v13050803.
Vibhute S, Kasar A, Mahale H, Gaikwad M, Kulkarni M. NICLOSAMIDE: A POTENTIAL TREATMENT OPTION FOR COVID-19. Int J Appl Pharm 2023:50–6. https://doi.org/10.22159/ijap.2023v15i1.45850.
Keykavousi K, Nourbakhsh F, Abdollahpour N, Fazeli F, Sedaghat A, Soheili V, et al. A Review of Routine Laboratory Biomarkers for the Detection of Severe COVID-19 Disease. Int J Anal Chem 2022;2022:e9006487. https://doi.org/10.1155/2022/9006487.
Schwarz B, Sharma L, Roberts L, Peng X, Bermejo S, Leighton I, et al. Cutting Edge: Severe SARS-CoV-2 Infection in Humans Is Defined by a Shift in the Serum Lipidome, Resulting in Dysregulation of Eicosanoid Immune Mediators. J Immunol Baltim Md 1950 2021;206:329–34. https://doi.org/10.4049/jimmunol.2001025.
Wang C, Li X, Ning W, Gong S, Yang F, Fang C, et al. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics 2021;11:8008–26. https://doi.org/10.7150/thno.61832.
Völlmy F, van den Toorn H, Zenezini Chiozzi R, Zucchetti O, Papi A, Volta CA, et al. A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci Alliance 2021;4:e202101099. https://doi.org/10.26508/lsa.202101099.
Gomila RM, Martorell G, Fraile-Ribot PA, Doménech-Sánchez A, Albertí M, Oliver A, et al. Use of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Analysis of Serum Peptidome to Classify and Predict Coronavirus Disease 2019 Severity. Open Forum Infect Dis 2021;8:ofab222. https://doi.org/10.1093/ofid/ofab222.
Chen Y-M, Zheng Y, Yu Y, Wang Y, Huang Q, Qian F, et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J 2020;39:e105896. https://doi.org/10.15252/embj.2020105896.
Zhang J, Rao X, Li Y, Zhu Y, Liu F, Guo G, et al. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care 2021;11:5. https://doi.org/10.1186/s13613-020-00792-3.
Reyes L, A. Sanchez-Garcia M, Morrison T, Howden AJM, Watts ER, Arienti S, et al. A type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDS. Wellcome Open Res 2021;6:38. https://doi.org/10.12688/wellcomeopenres.16584.2.
Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst 2021;12:23-40.e7. https://doi.org/10.1016/j.cels.2020.10.003.
Danlos F-X, Grajeda-Iglesias C, Durand S, Sauvat A, Roumier M, Cantin D, et al. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Cell Death Dis 2021;12:1–11. https://doi.org/10.1038/s41419-021-03540-y.
Cai Y, Kim DJ, Takahashi T, Broadhurst DI, Ma S, Rattray NJW, et al. Kynurenic acid underlies sex-specific immune responses to COVID-19. MedRxiv Prepr Serv Health Sci 2020:2020.09.06.20189159. https://doi.org/10.1101/2020.09.06.20189159.
Li Y, Zhang Y, Lu R, Dai M, Shen M, Zhang J, et al. Lipid metabolism changes in patients with severe COVID-19. Clin Chim Acta Int J Clin Chem 2021;517:66–73. https://doi.org/10.1016/j.cca.2021.02.011.
Roberts I, Wright Muelas M, Taylor JM, Davison AS, Xu Y, Grixti JM, et al. Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome. Metabolomics Off J Metabolomic Soc 2021;18:6. https://doi.org/10.1007/s11306-021-01859-3.
Yang C, Yang X, Du J, Wang H, Li H, Zeng L, et al. Retinoic acid promotes the endogenous repair of lung stem/progenitor cells in combined with simvastatin after acute lung injury: a stereological analysis. Respir Res 2015;16:140. https://doi.org/10.1186/s12931-015-0300-9.
Krishnan S, Nordqvist H, Ambikan A, Gupta S, Sperk M, Svensson-Akusjärvi S, et al. Implications of central carbon metabolism in SARS-CoV-2 replication and disease severity. 2021. https://doi.org/10.1101/2021.02.24.432759.
Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front Immunol 2021;12:686240. https://doi.org/10.3389/fimmu.2021.686240.
Cook AM, Faustini SE, Williams LJ, Cunningham AF, Drayson MT, Shields AM, et al. Validation of a combined ELISA to detect IgG, IgA and IgM antibody responses to SARS-CoV-2 in mild or moderate non-hospitalised patients. J Immunol Methods 2021;494:113046. https://doi.org/10.1016/j.jim.2021.113046.
Mahmoodpoor A, Hosseini M, Soltani-Zangbar S, Sanaie S, Aghebati-Maleki L, Saghaleini SH, et al. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression. Mol Immunol 2021;138:121–7. https://doi.org/10.1016/j.molimm.2021.06.001.
Xu Y, Yang H, Wang J, Li X, Xue C, Niu C, et al. Serum Albumin Levels are a Predictor of COVID-19 Patient Prognosis: Evidence from a Single Cohort in Chongqing, China. Int J Gen Med 2021;14:2785–97. https://doi.org/10.2147/IJGM.S312521.
Elham AS, Azam K, Azam J, Mostafa L, Nasrin B, Marzieh N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin Nutr ESPEN 2021;43:276–82. https://doi.org/10.1016/j.clnesp.2021.03.040.
Beigmohammadi MT, Bitarafan S, Abdollahi A, Amoozadeh L, Salahshour F, Mahmoodi Ali Abadi M, et al. The association between serum levels of micronutrients and the severity of disease in patients with COVID-19. Nutr Burbank Los Angel Cty Calif 2021;91–92:111400. https://doi.org/10.1016/j.nut.2021.111400.
Eberhardt KA, Meyer-Schwickerath C, Heger E, Knops E, Lehmann C, Rybniker J, et al. RNAemia Corresponds to Disease Severity and Antibody Response in Hospitalized COVID-19 Patients. Viruses 2020;12:1045. https://doi.org/10.3390/v12091045.
Caterino M, Gelzo M, Sol S, Fedele R, Annunziata A, Calabrese C, et al. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci Rep 2021;11:2941. https://doi.org/10.1038/s41598-021-82426-7.
Park J, Kim H, Kim SY, Kim Y, Lee J-S, Dan K, et al. In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients. Sci Rep 2020;10:22418. https://doi.org/10.1038/s41598-020-80120-8.
Yan L, Yi J, Huang C, Zhang J, Fu S, Li Z, et al. Rapid Detection of COVID-19 Using MALDI-TOF-Based Serum Peptidome Profiling. Anal Chem 2021;93:4782–7. https://doi.org/10.1021/acs.analchem.0c04590.
Kimhofer T, Lodge S, Whiley L, Gray N, Loo RL, Lawler NG, et al. Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection. J Proteome Res 2020;19:4442–54. https://doi.org/10.1021/acs.jproteome.0c00519.
Lodge S, Nitschke P, Kimhofer T, Coudert JD, Begum S, Bong S-H, et al. NMR Spectroscopic Windows on the Systemic Effects of SARS-CoV-2 Infection on Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines. J Proteome Res 2021;20:1382–96. https://doi.org/10.1021/acs.jproteome.0c00876.
Bruzzone C, Bizkarguenaga M, Gil-Redondo R, Diercks T, Arana E, García de Vicuña A, et al. SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of Serum. iScience 2020;23:101645. https://doi.org/10.1016/j.isci.2020.101645.
Singh Y, Trautwein C, Fendel R, Krickeberg N, Berezhnoy G, Bissinger R, et al. SARS-CoV-2 infection paralyzes cytotoxic and metabolic functions of the immune cells. Heliyon 2021;7:e07147. https://doi.org/10.1016/j.heliyon.2021.e07147.
Meoni G, Ghini V, Maggi L, Vignoli A, Mazzoni A, Salvati L, et al. Metabolomic/lipidomic profiling of COVID-19 and individual response to tocilizumab. PLoS Pathog 2021;17:e1009243. https://doi.org/10.1371/journal.ppat.1009243.
Dierckx T, Van Elslande J, Salmela H, Decru B, Wauters E, Gunst J, et al. The metabolic fingerprint of COVID-19 severity. 2020. https://doi.org/10.1101/2020.11.09.20228221.
Wei C, Wan L, Zhang Y, Fan C, Yan Q, Yang X, et al. Cholesterol Metabolism--Impact for SARS-CoV-2 Infection Prognosis, Entry, and Antiviral Therapies. 2020. https://doi.org/10.1101/2020.04.16.20068528.
Petrey AC, Qeadan F, Middleton EA, Pinchuk IV, Campbell RA, Beswick EJ. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol 2021;109:55–66. https://doi.org/10.1002/JLB.3COVA0820-410RRR.
Varchetta S, Mele D, Oliviero B, Mantovani S, Ludovisi S, Cerino A, et al. Unique immunological profile in patients with COVID-19. Cell Mol Immunol 2021;18:604–12. https://doi.org/10.1038/s41423-020-00557-9.
Rieder M, Wirth L, Pollmeier L, Jeserich M, Goller I, Baldus N, et al. Serum Protein Profiling Reveals a Specific Upregulation of the Immunomodulatory Protein Progranulin in Coronavirus Disease 2019. J Infect Dis 2021;223:775–84. https://doi.org/10.1093/infdis/jiaa741.
Torres-Ruiz J, Pérez-Fragoso A, Maravillas-Montero JL, Llorente L, Mejía-Domínguez NR, Páez-Franco JC, et al. Redefining COVID-19 Severity and Prognosis: The Role of Clinical and Immunobiotypes. Front Immunol 2021;12:689966. https://doi.org/10.3389/fimmu.2021.689966.
Sosa-Hernández VA, Torres-Ruíz J, Cervantes-Díaz R, Romero-Ramírez S, Páez-Franco JC, Meza-Sánchez DE, et al. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front Immunol 2020;11:611004. https://doi.org/10.3389/fimmu.2020.611004.
Zhu Z, Yang Y, Fan L, Ye S, Lou K, Hua X, et al. Low serum level of apolipoprotein A1 may predict the severity of COVID‐19: A retrospective study. J Clin Lab Anal 2021;35:e23911. https://doi.org/10.1002/jcla.23911.
Oja AE, Saris A, Ghandour CA, Kragten NAM, Hogema BM, Nossent EJ, et al. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur J Immunol 2020;50:1998–2012. https://doi.org/10.1002/eji.202048908.
Bichara CDA, da Silva Graça Amoras E, Vaz GL, da Silva Torres MK, Queiroz MAF, do Amaral IPC, et al. Dynamics of anti-SARS-CoV-2 IgG antibodies post-COVID-19 in a Brazilian Amazon population. BMC Infect Dis 2021;21:443. https://doi.org/10.1186/s12879-021-06156-x.
Sun J, Tang X, Bai R, Liang C, Zeng L, Lin H, et al. The kinetics of viral load and antibodies to SARS-CoV-2. Clin Microbiol Infect 2020;26:1690.e1-1690.e4. https://doi.org/10.1016/j.cmi.2020.08.043.
Liu J, Liu S, Zhang Z, Lee X, Wu W, Huang Z, et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol 2021;6:135–43. https://doi.org/10.1016/j.synbio.2021.06.002.
Hausburg MA, Banton KL, Roshon M, Bar-Or D. Clinically distinct COVID-19 cases share notably similar immune response progression: A follow-up analysis. Heliyon 2020;7:e05877. https://doi.org/10.1016/j.heliyon.2020.e05877.
Xu Z-S, Shu T, Kang L, Wu D, Zhou X, Liao B-W, et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduct Target Ther 2020;5:100. https://doi.org/10.1038/s41392-020-0211-1.
Desai AP, Dirajlal-Fargo S, Durieux JC, Tribout H, Labbato D, McComsey GA. Vitamin K & D Deficiencies Are Independently Associated With COVID-19 Disease Severity. Open Forum Infect Dis 2021;8:ofab408. https://doi.org/10.1093/ofid/ofab408.
Ye K, Tang F, Liao X, Shaw BA, Deng M, Huang G, et al. Does Serum Vitamin D Level Affect COVID-19 Infection and Its Severity?-A Case-Control Study. J Am Coll Nutr 2021;40:724–31. https://doi.org/10.1080/07315724.2020.1826005.
Pérez-Torres I, Guarner-Lans V, Soria-Castro E, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, et al. Alteration in the Lipid Profile and the Desaturases Activity in Patients With Severe Pneumonia by SARS-CoV-2. Front Physiol 2021;12:667024. https://doi.org/10.3389/fphys.2021.667024.
Thomas T, Stefanoni D, Reisz JA, Nemkov T, Bertolone L, Francis RO, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020;5:e140327, 140327. https://doi.org/10.1172/jci.insight.140327.
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020;584:463–9. https://doi.org/10.1038/s41586-020-2588-y.
Stone MR, O’Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, et al. Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 2007;120:3999–4008. https://doi.org/10.1242/jcs.009241.
Song J-W, Lam SM, Fan X, Cao W-J, Wang S-Y, Tian H, et al. Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesis. Cell Metab 2020;32:188-202.e5. https://doi.org/10.1016/j.cmet.2020.06.016.
You R, Dai J, Zhang P, Barding GA, Raftery D. Dynamic Metabolic Response to Adriamycin-Induced Senescence in Breast Cancer Cells. Metabolites 2018;8:95. https://doi.org/10.3390/metabo8040095.
Segers K, Declerck S, Mangelings D, Heyden YV, Eeckhaut AV. Analytical techniques for metabolomic studies: a review. Bioanalysis 2019;11:2297–318. https://doi.org/10.4155/bio-2019-0014.
Manchester M, Anand A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. Adv Virus Res 2017;98:57–81. https://doi.org/10.1016/bs.aivir.2017.02.001.
Henkel R, Agarwal A, Samanta L. Oxidants, Antioxidants, and Impact of the Oxidative Status in Male Reproduction. 2018.
Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet Lond Engl 2020;395:514–23. https://doi.org/10.1016/S0140-6736(20)30154-9.
Mallat J, Lemyze M, Thevenin D. Do not forget to give thiamine to your septic shock patient! J Thorac Dis 2016;8:1062–6. https://doi.org/10.21037/jtd.2016.04.32.
Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology 2021;27:423–37. https://doi.org/10.1016/j.pulmoe.2021.03.008.
Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell 2021;184:1671–92. https://doi.org/10.1016/j.cell.2021.02.029.
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846–8. https://doi.org/10.1007/s00134-020-05991-x.
Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet Lond Engl 2014;383:1503–16. https://doi.org/10.1016/S0140-6736(13)61048-X.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl 2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
Hao Y, Zhang Z, Feng G, Chen M, Wan Q, Lin J, et al. Distinct lipid metabolic dysregulation in asymptomatic COVID-19. iScience 2021;24:102974. https://doi.org/10.1016/j.isci.2021.102974.
Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020;27:1451–4. https://doi.org/10.1038/s41418-020-0530-3.
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020;324:782–93. https://doi.org/10.1001/jama.2020.12839.
Aziz M, Fatima R, Lee-Smith W, Assaly R. The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis. Crit Care Lond Engl 2020;24:255. https://doi.org/10.1186/s13054-020-02995-3.
Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol 2020;92:2152–8. https://doi.org/10.1002/jmv.26003.
Abdeen Y, Kaako A, Ahmad Amin Z, Muhanna A, Josefine Froessl L, Alnabulsi M, et al. The Prognostic Effect of Serum Albumin Level on Outcomes of Hospitalized COVID-19 Patients. Crit Care Res Pract 2021;2021:9963274. https://doi.org/10.1155/2021/9963274.
Feketea GM, Vlacha V. The Diagnostic Significance of Usual Biochemical Parameters in Coronavirus Disease 19 (COVID-19): Albumin to Globulin Ratio and CRP to Albumin Ratio. Front Med 2020;7:566591. https://doi.org/10.3389/fmed.2020.566591.
Conca W, Alabdely M, Albaiz F, Foster MW, Alamri M, Alkaff M, et al. Serum β2-microglobulin levels in Coronavirus disease 2019 (Covid-19): Another prognosticator of disease severity? PloS One 2021;16:e0247758. https://doi.org/10.1371/journal.pone.0247758.
Hu R, Han C, Pei S, Yin M, Chen X. Procalcitonin levels in COVID-19 patients. Int J Antimicrob Agents 2020;56:106051. https://doi.org/10.1016/j.ijantimicag.2020.106051.
Dolci A, Robbiano C, Aloisio E, Chibireva M, Serafini L, Falvella FS, et al. Searching for a role of procalcitonin determination in COVID-19: a study on a selected cohort of hospitalized patients. Clin Chem Lab Med 2020;59:433–40. https://doi.org/10.1515/cclm-2020-1361.
Hu X, Chen D, Wu L, He G, Ye W. Low Serum Cholesterol Level Among Patients with COVID-19 Infection in Wenzhou, China 2020. https://doi.org/10.2139/ssrn.3544826.
Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chim Acta Int J Clin Chem 2020;510:105–10. https://doi.org/10.1016/j.cca.2020.07.015.
Casari I, Manfredi M, Metharom P, Falasca M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog Lipid Res 2021;82:101092. https://doi.org/10.1016/j.plipres.2021.101092.
Masana L, Correig E, Ibarretxe D, Anoro E, Arroyo JA, Jericó C, et al. Low HDL and high triglycerides predict COVID-19 severity. Sci Rep 2021;11:7217. https://doi.org/10.1038/s41598-021-86747-5.
Palmas F, Clarke J, Colas RA, Gomez EA, Keogh A, Boylan M, et al. Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients. PloS One 2021;16:e0256226. https://doi.org/10.1371/journal.pone.0256226.
V’kovski P, Al-Mulla H, Thiel V, Neuman BW. New insights on the role of paired membrane structures in coronavirus replication. Virus Res 2015;202:33–40. https://doi.org/10.1016/j.virusres.2014.12.021.
Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F. The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target. Int J Mol Sci 2020;21:3544. https://doi.org/10.3390/ijms21103544.
Akram M, Munir N, Daniyal M, Egbuna C, Găman M-A, Onyekere PF, et al. Vitamins and Minerals: Types, Sources and their Functions. In: Egbuna C, Dable Tupas G, editors. Funct. Foods Nutraceuticals Bioact. Compon. Formul. Innov., Cham: Springer International Publishing; 2020, p. 149–72. https://doi.org/10.1007/978-3-030-42319-3_9.
Pfeffer PE, Hawrylowicz CM. Vitamin D and lung disease. Thorax 2012;67:1018–20. https://doi.org/10.1136/thoraxjnl-2012-202139.
Greiller CL, Martineau AR. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients 2015;7:4240–70. https://doi.org/10.3390/nu7064240.
Bombardini T, Picano E. Angiotensin-Converting Enzyme 2 as the Molecular Bridge Between Epidemiologic and Clinical Features of COVID-19. Can J Cardiol 2020;36:784.e1-784.e2. https://doi.org/10.1016/j.cjca.2020.03.026.
Phokela SS, Peleg S, Moya FR, Alcorn JL. Regulation of human pulmonary surfactant protein gene expression by 1alpha,25-dihydroxyvitamin D3. Am J Physiol Lung Cell Mol Physiol 2005;289:L617-626. https://doi.org/10.1152/ajplung.00129.2004.
Rehan VK, Torday JS, Peleg S, Gennaro L, Vouros P, Padbury J, et al. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary alveolar type II cells. Mol Genet Metab 2002;76:46–56. https://doi.org/10.1016/s1096-7192(02)00022-7.
Smith EM, Jones JL, Han JE, Alvarez JA, Sloan JH, Konrad RJ, et al. High-Dose Vitamin D3 Administration Is Associated With Increases in Hemoglobin Concentrations in Mechanically Ventilated Critically Ill Adults: A Pilot Double-Blind, Randomized, Placebo-Controlled Trial. JPEN J Parenter Enteral Nutr 2018;42:87–94. https://doi.org/10.1177/0148607116678197.
Han JE, Jones JL, Tangpricha V, Brown MA, Brown LAS, Hao L, et al. High Dose Vitamin D Administration in Ventilated Intensive Care Unit Patients: A Pilot Double Blind Randomized Controlled Trial. J Clin Transl Endocrinol 2016;4:59–65. https://doi.org/10.1016/j.jcte.2016.04.004.
Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PloS One 2010;5:e11088. https://doi.org/10.1371/journal.pone.0011088.
Schurgers LJ, Vermeer C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim Biophys Acta 2002;1570:27–32. https://doi.org/10.1016/s0304-4165(02)00147-2.
Anastasi E, Ialongo C, Labriola R, Ferraguti G, Lucarelli M, Angeloni A. Vitamin K deficiency and covid-19. Scand J Clin Lab Invest 2020;80:525–7. https://doi.org/10.1080/00365513.2020.1805122.
Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care Lond Engl 2017;21:300. https://doi.org/10.1186/s13054-017-1891-y.
de Grooth H-J, Manubulu-Choo W-P, Zandvliet AS, Spoelstra-de Man AME, Girbes AR, Swart EL, et al. Vitamin C Pharmacokinetics in Critically Ill Patients: A Randomized Trial of Four IV Regimens. Chest 2018;153:1368–77. https://doi.org/10.1016/j.chest.2018.02.025.
Fowler AA, Syed AA, Knowlson S, Sculthorpe R, Farthing D, DeWilde C, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med 2014;12:32. https://doi.org/10.1186/1479-5876-12-32.
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020;370:eabd4585. https://doi.org/10.1126/science.abd4585.
Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020;181:1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.
Arvinte C, Singh M, Marik PE. Serum Levels of Vitamin C and Vitamin D in a Cohort of Critically Ill COVID-19 Patients of a North American Community Hospital Intensive Care Unit in May 2020: A Pilot Study. Med Drug Discov 2020;8:100064. https://doi.org/10.1016/j.medidd.2020.100064.
Winterbourn CC, Vissers MC. Changes in ascorbate levels on stimulation of human neutrophils. Biochim Biophys Acta 1983;763:175–9. https://doi.org/10.1016/0167-4889(83)90041-1.
Washko P, Rotrosen D, Levine M. Ascorbic acid transport and accumulation in human neutrophils. J Biol Chem 1989;264:18996–9002.
Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care 2011;14:610–7. https://doi.org/10.1097/MCO.0b013e32834b8911.
Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, et al. Randomized, Double-Blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study. Crit Care Med 2016;44:360–7. https://doi.org/10.1097/CCM.0000000000001572.
Fimognari FL, Loffredo L, Di Simone S, Sampietro F, Pastorelli R, Monaldo M, et al. Hyperhomocysteinaemia and poor vitamin B status in chronic obstructive pulmonary disease. Nutr Metab Cardiovasc Dis NMCD 2009;19:654–9. https://doi.org/10.1016/j.numecd.2008.12.006.
Razeghi Jahromi S, Moradi Tabriz H, Togha M, Ariyanfar S, Ghorbani Z, Naeeni S, et al. The correlation between serum selenium, zinc, and COVID-19 severity: an observational study. BMC Infect Dis 2021;21:899. https://doi.org/10.1186/s12879-021-06617-3.
Yan H, Liang X, Du J, He Z, Wang Y, Lyu M, et al. Proteomic and metabolomic investigation of serum lactate dehydrogenase elevation in COVID‐19 patients. Proteomics 2021;21:2100002. https://doi.org/10.1002/pmic.202100002.
Shu T, Ning W, Wu D, Xu J, Han Q, Huang M, et al. Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19. Immunity 2020;53:1108-1122.e5. https://doi.org/10.1016/j.immuni.2020.10.008.
Published
How to Cite
Issue
Section
Copyright (c) 2024 WAHYU UTAMI, NAUFAL FARRAS
This work is licensed under a Creative Commons Attribution 4.0 International License.