CENTIPEDE VENOM TOXINS AND ITS BIOMEDICAL AND PHARMACOLOGICAL PROPERTIES

Authors

  • NIDHI YADAV Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur
  • RAVI KANT UPADHYAY Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

DOI:

https://doi.org/10.22159/ijpps.2022v14i9.45488

Keywords:

Centipedes, Venom glands, Toxins, Peptides, Channel blockers, Biochemical and pharmacological properties

Abstract

The present review article explains venoms from various centipede species with their biomedical and pharmacological properties. Centipede venom is a natural source of bioactive proteins, peptides and other small molecules. These use venoms as defense arsenals to paralyze prey. This review paper sketch out important physiological effects like platelet aggregation, anticoagulant, phospholipase A2 and trypsin inhibiting activity. Centipede venom toxins selectively bind Kv2.1 channel and block them. Centipede venom disrupts cardiovascular, respiratory, muscular and nervous systems by targeting the broadly distributed KCNQ channels. It also signifies toxin-voltage-gated integrations and its inhibition. These peptides can be used for developing drugs for treatments as well as bio-insecticides for insect control.

Downloads

Download data is not yet available.

References

Dugon MM, Arthur W. Prey orientation and the role of venom availability in the predatory behaviour of the centipede scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J Insect Physiol. 2012;58(6):874-80. doi: 10.1016/ j.jinsphys.2012.03.014, PMID 22490529.

Radis Baptista G, Konno K. Arthropod venom components and their potential usage. Toxins (Basel). 2020;12(2):82. doi: 10.3390/toxins12020082, PMID 31991714.

Norris RF, Kogan M. Ecology of interactions between weeds and arthropods. Annu Rev Entomol. 2005;50:479-503. doi: 10.1146/annurev.ento.49.061802.123218, PMID 15822205.

Undheim EA, Jenner RA, King GF. Centipede venoms as a source of drug leads. Expert Opin Drug Discov. 2016;11(12):1139-49. doi: 10.1080/17460441.2016.1235155, PMID 27611363.

Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel evolution of complex centipede venoms revealed by comparative proteo transcriptomic analyses. Mol Biol Evol. 2019;36:2748-63.

Balit CR, Harvey MS, Waldock JM, Isbister GK. Prospective study of centipede bites in Australia. J Toxicol Clin Toxicol. 2004;42(1):41-8. doi: 10.1081/clt-120028743, PMID 15083935.

Bouchard NC, Chan GM, Hoffman RS. Vietnamese centipede envenomation. Vet Hum Toxicol. 2004;46(6):312-3. PMID 15587246.

Ross EJ, Jamal Z, Yee J. Centipede envenomation. In: Stat pearls. Vol. 24. Treasure Island, (FL); 2022.

Chen M, Li J, Zhang F, Liu Z. Isolation and characterization of smTx-I, a specific Kv2.1 blocker from the venom of the centipede scolopendra subspinipes mutilans L. Koch. J Pept Sci. 2014;20(3):159-64. doi: 10.1002/psc.2588, PMID 24464516.

Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW, Wang YJ. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. J Proteome Res. 2012;11(12):6197-212. doi: 10.1021/pr300881d, PMID 23148443.

Luo L, Li B, Wang S, Wu F, Wang X, Liang P. Centipedes subdue giant prey by blocking KCNQ channels. Proc Natl Acad Sci USA. 2018;115(7):1646-51. doi: 10.1073/pnas.1714760115, PMID 29358396.

Ombati R, Luo L, Yang S, Lai R. Centipede envenomation: clinical importance and the underlying molecular mechanisms. Toxicon. 2018;154:60-8. doi: 10.1016/j.toxicon.2018.09.008, PMID 30273703.

Liu ZC, Liang JY, Lan XQ, Li T, Zhang JR, Zhao F. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zool Res. 2020;41(2):138-47. doi: 10.24272/j.issn.2095-8137.2020.019, PMID 31945809.

Hakim MA, Yang S, Lai R. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel). 2015;7(11):4832-51. doi: 10.3390/toxins7114832, PMID 26593947.

Sabia Junior EF, Menezes LFS, de Araujo IFS, Schwartz EF. Natural occurrence in venomous arthropods of antimicrobial peptides active against protozoan parasites. Toxins (Basel). 2019;11(10):563. doi: 10.3390/toxins11100563, PMID 31557900.

Garra G, Singer AJ, Leno R, Taira BR, Gupta N, Mathaikutty B. Heat or cold packs for neck and back strain: a randomized controlled trial of efficacy. Acad Emerg Med. 2010;17(5):484-9. doi: 10.1111/j.1553-2712.2010.00735.x, PMID 20536800.

Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon. 2014;82:30-51. doi: 10.1016/j.toxicon.2014.02.003, PMID 24548696.

Wang Y, Li X, Yang M, Wu C, Zou Z, Tang J. Centipede venom peptide SsmTX-I with two intramolecular disulfide bonds shows analgesic activities in animal models. J Pept Sci. 2017;23(5):384-91. doi: 10.1002/psc.2988, PMID 28247497.

Schwartz EF, Mourao CB, Moreira KG, Camargos TS, Mortari MR. Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers. 2012;98(4):385-405. doi: 10.1002/bip.22100, PMID 23193602.

Malta MB, Lira MS, Soares SL, Rocha GC, Knysak I, Martins R. Toxic activities of Brazilian centipede venoms. Toxicon. 2008;52(2):255-63. doi: 10.1016/j.toxicon.2008.05.012, PMID 18586047.

Rong M, Yang S, Wen B, Mo G, Kang D, Liu J. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J Proteomics. 2015;114(114):28-37. doi: 10.1016/j.jprot.2014.10.014, PMID 25449838.

Gonzalez Morales L, Pedraza Escalona M, Diego Garcia E, Restano Cassulini R, Batista CV, Gutierrez Mdel C. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. J Proteomics. 2014;111:224-37. doi: 10.1016/j.jprot.2014.04.033. PMID 24780725.

Undheim EA, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel). 2015;7(3):679-704. doi: 10.3390/toxins7030679, PMID 25723324.

Robles JT, Valverde FF, Cisneros LV, Villeda JH, Sanchez Reyes A, Gutierrez MDC. Mitochondrial activity disruption and local muscle damage induced in mice by Scolopendra polymorpha venom. J Venom Anim Toxins Incl Trop Dis. 2020;26:e20190079. doi: 10.1590/1678-9199-JVATITD-2019-0079. PMID 32536942.

Kimura LF, Prezotto Neto JP, Tavora Bde C, Antoniazzi MM, Knysak I, Gioia Guizze SP. Local inflammatory reaction induced by Scolopendra viridicornis centipede venom in mice. Toxicon. 2013;76:239-46. doi: 10.1016/j.toxicon.2013.10.017, PMID 24140924.

Tavora BC, Kimura LF, Antoniazzi MM, Chiariello TM, Faquim Mauro EL, Barbaro KC. Involvement of mast cells and histamine in edema induced in mice by Scolopendra viridicornis centipede venom. Toxicon. 2016;121:51-60. doi: 10.1016/j.toxicon.2016.08.017, PMID 27567703.

Zhu A, Aierken A, Yao Z, Vu S, Tian Y, Zheng J. A centipede toxin causes rapid desensitization of nociceptor TRPV1 ion channel. Toxicon. 2020;178:41-9. doi: 10.1016/j.toxicon.2020.02.016, PMID 32097697.

Ward MJ, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the giant Florida blue centipede, Scolopendra viridis. Toxicon. 2018;152:121-36. doi: 10.1016/ j.toxicon.2018.07.030, PMID 30086358.

Yang S, Wang Y, Wang L, Kamau P, Zhang H, Luo A. Target switch of centipede toxins for antagonistic switch. Sci Adv. 2020;6(32):eabb5734. doi: 10.1126/sciadv.abb5734. PMID 32821839.

Du C, Li J, Shao Z, Mwangi J, Xu R, Tian H. Centipede KCNQ inhibitor SsTx also targets KV1.3. Toxins (Basel). 2019;11(2):76. doi: 10.3390/toxins11020076, PMID 30717088.

Hamanaka K, Mori A. Toxicity of venom from the mamushi, Gloydius blomhoffii, (Squamata, Crotalinae) to centipedes. Toxicon. 2020;188:11-5. doi: 10.1016/j.toxicon.2020.10.001, PMID 33039367.

Herzig V. Arthropod assassins: crawling biochemists with diverse toxin pharmacopeias. Toxicon. 2019;158:33-7. doi: 10.1016/j.toxicon.2018.11.312, PMID 30496730.

Fratini F, Cilia G, Turchi B, Felicioli A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon. 2017;130:91-103. doi: 10.1016/j.toxicon.2017.02.020, PMID 28242227.

Kong Y, Huang SL, Shao Y, Li S, Wei JF. Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes mutilans. J Ethnopharmacol. 2013;145(1):182-6. doi: 10.1016/j.jep.2012.10.048, PMID 23127646.

Pemberton RW. Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol. 1999;65(3):207-16. doi: 10.1016/s0378-8741(98)00209-8, PMID 10404418.

Khusro A, Aarti C, Barbabosa Pliego A, Rivas Caceres RR, Cipriano Salazar M. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microb Pathog. 2018;125:96-107. doi: 10.1016/j.micpath.2018.09.003, PMID 30195644.

Wang C, Shan B, Wang Q, Xu Q, Zhang H, Lei H. Fusion of Ssm6a with a protein scaffold retains selectivity on NaV 1.7 and improves its therapeutic potential against chronic pain. Chem Biol Drug Des. 2017;89(6):825-33. doi: 10.1111/cbdd.12915, PMID 27896920.

Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. Two novel antimicrobial peptides from centipede venoms. Toxicon. 2010;55(2-3):274-9. doi: 10.1016/j.toxicon.2009.07.040, PMID 19716842.

Lan XQ, Zhao F, Wang QQ, Li JH, Zeng L, Zhang Y, Lee WH. Isolation and characterization of the major centipede allergen Sco m 5 from Scolopendra subspinipes mutilans. Allergol Int. 2021;70(1):121-8. doi: 10.1016/j.alit.2020.06.003, PMID 32680616.

Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, Ahn MY. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J Microbiol Biotechnol. 2015;25(8):1275-80. doi: 10.4014/jmb.1503.03091, PMID 25907065.

Park YJ, Lee HY, Jung YS, Park JS, Hwang JS, Bae YS. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep. 2015;48(8):479-84. doi: 10.5483/bmbrep.2015.48.8.115, PMID 26129676.

Park YJ, Park B, Lee M, Jeong YS, Lee HY, Sohn DH, Song JJ, Lee JH. A novel antimicrobial peptide acting via formyl peptide receptor 2 shows therapeutic effects against rheumatoid arthritis. Sci Rep. 2018;8(1):14664. doi: 10.1038/s41598-018-32963-5, PMID 30279454.

Hou H, Yan W, Du K, Ye Y, Cao Q, Ren W. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expr Purif. 2013;92(2):230-4. doi: 10.1016/j.pep.2013.10.004, PMID 24145284.

Chaparro Aguirre E, Segura Ramirez PJ, Alves FL, Riske KA, Miranda A, Silva Junior PI. Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci Rep. 2019;9(1):13631. doi: 10.1038/s41598-019-50061-y, PMID 31541146.

Ali SM, Siddiqui R, Sagathevan KA, Khan NA. Antibacterial activity of selected invertebrate species. Folia Microbiol (Praha). 2021;66(2):285-91. doi: 10.1007/s12223-021-00860-6, PMID 33704690.

Yoo WG, Lee JH, Shin Y, Shim JY, Jung M, Kang BC, Oh J, Seong J, Lee HK. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct Integr Genomics. 2014;14(2):275-83. doi: 10.1007/s10142-014-0366-3, PMID 24652097.

Choi H, Hwang JS, Lee DG. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol Biol. 2014;23(6):788-99. doi: 10.1111/imb.12124, PMID 25209888.

Lee H, Hwang JS, Lee DG. Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans. Biochem J 2017;474(5):635-45. doi: 10.1042/BCJ20161039, PMID 28008133.

Lee H, Hwang JS, Lee J, Kim JI, Lee DG. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim Biophys Acta. 2015;1848(2):634-42. doi: 10.1016/j.bbamem.2014.11.016, PMID 25462167.

Kwon YN, Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, Ahn MY. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J Microbiol Biotechnol. 2013;23(10):1381-5. doi: 10.4014/jmb.1306.06013, PMID 23801249.

Park YJ, Kim HS, Lee HY, Hwang JS, Bae YS. A novel antimicrobial peptide isolated from centipede Scolopendra subspinipes mutilans stimulates neutrophil activity through formyl peptide receptor 2. Biochem Biophys Res Commun. 2017;494(1-2):352-7. doi: 10.1016/j.bbrc.2017.10.019, PMID 28988115.

Primon Barros M, Jose Macedo A. Animal venom peptides: potential for new antimicrobial agents. Curr Top Med Chem. 2017;17(10):1119-56. doi: 10.2174/1568026616666160930151242, PMID 27697042.

Smith JJ, Undheim EAB. True lies: using proteomics to assess the accuracy of transcriptome-based venomics in centipedes uncovers false positives and reveals startling intraspecific variation in colopendra subspinipes. Toxins (Basel). 2018;10(3):96. doi: 10.3390/toxins10030096, PMID 29495554.

Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. Proteotranscriptomic analysis and discovery of the profile and diversity of toxin-like proteins in centipede. Mol Cell Proteomics. 2018;17(4):709-20. doi: 10.1074/ mcp.RA117.000431, PMID 29339413.

Ellsworth SA, Nystrom GS, Ward MJ, Freitas de Sousa LA, Hogan MP, Rokyta DR. Convergent recruitment of adamalysin-like metalloproteases in the venom of the red bark centipede (Scolopo cryptops sexspinosus). Toxicon. 2019;168:1-15. doi: 10.1016/j.toxicon.2019.06.021, PMID 31229627.

De Lucca Caetano LH, Nishiyama-Jr MY, de Carvalho Lins Fernandes Tavora B, de Oliveira UC. Recombinant production and characterization of a new toxin from Cryptopsi heringi centipede venom revealed by proteome and transcriptome analysis. Toxins (Basel). 2021;2(2):858.

Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Sci. 2018;10(2):29-34. doi: 10.22159/ijcpr.2018v10i2.25887.

Ahluwalia S, Shah N. Animal venom for treating breast cancer. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6(6):24-30.

Mohd KS, MA Kassim Hassan, Watirah Azemin, S Dharmaraj. A review of potential anticancers from antimicrobial peptides. “A review of potential anticancers from antimicrobial peptides”. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(7):19-26.

Kumar RB, MX Suresh MX. Neurotox: a unique database for animal neurotoxins. Int J Pharm Pharm Sci. 2015;7:351-4.

Asawale KY, MC Mehta MC, Uike PS. Drug utilization analysis of anti-snake venom at a tertiary care center in central maharashtra: A 3 y retrospective study. Asian J Pharm Clin Res. 2018;11(8):134-7. doi: 10.22159/ajpcr.2018.v11i8.26174.

Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Sci. 2018;10(2):29-34. doi: 10.22159/ijcpr.2018v10i2.25887.

Published

01-09-2022

How to Cite

YADAV, N., and R. K. UPADHYAY. “CENTIPEDE VENOM TOXINS AND ITS BIOMEDICAL AND PHARMACOLOGICAL PROPERTIES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 9, Sept. 2022, pp. 1-7, doi:10.22159/ijpps.2022v14i9.45488.

Issue

Section

Review Article(s)

Most read articles by the same author(s)