PRODUCTION OF POLYCLONAL ANTIBODIES AGAINST INDIAN CATTLE TICK RHIPICEPHALUS MICROPLUS SALIVA TOXINS AND ITS EFFICACY IN REVERSAL OF TOXIC EFFECTS IN ALBINO MICE

Authors

  • NIDHI YADAV Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur U. P. India
  • RAVI KANT UPADHYAY Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur U. P. India https://orcid.org/0000-0002-1264-3025

DOI:

https://doi.org/10.22159/ijpps.2023v15i11.48954

Keywords:

Ticks, Salivary proteins toxins, Disease pathogens, Morbidities, Antiserum, Immunotherapy

Abstract

Objective: This study focuses on the generation of polyclonal antibodies against tick saliva toxins and its use to reverse the toxic effects in albino mice.

Methods: Polyclonal antibodies were generated by immunizing albino mice were immunized with saliva toxins mixed with incomplete Freund’s adjuvant. Experimental mice were treated with antiserum (polyclonal antibodies) and pre-incubated with tick saliva toxins in five different groups for observation of reversal of toxic effects, i.e. levels of bio-molecules and enzymes. For detection of polyclonal antibodies in the antiserum immune double diffusion (IDD) test of Ouchterlony was followed.

Results: By employing a step-by-step octanoic acid and ammonium sulphate precipitation process, IgG antibodies were separated from antiserum. A crescent band and precipitation band was obtained due to the interaction of antigen and antibodies in wet agarose gels (1%). When these antibodies were injected in albino mice, these have been successfully reversed the levels of acid phosphatase (ACP), alkaline phosphatase (ALP), glutamate pyruvate transaminase (GPT), glutamate oxaloacetate transaminase (GOT), lactic dehydrogenase (LDH) and acetylcholinesterase (AchE). Alkaline phosphate levels in the serum of albino mice injected with polyclonal antibodies were found to be 122.64%, 107.849%, and 104.71%, respectively. Glutamate pyruvate transaminase (GPT) has been reversed in mice treated with polyclonal antibodies up to 94.59%, 86.48% and 78.37% in the serum, while it was found to be 116.21% at 40% of 24-h LD50 dose in comparison to control respectively.

Similarly, level of lactic dehydrogenase was restored and found i.e. 104.55%, 103.82%, and 102.20% in the serum of albino mice. Respectively, in comparison to control, while mice injected with 40% of 24-h LD50 of the purified saliva toxins demonstrated 117.20% of lactic dehydrogenase (LDH) level in comparison to control.

Conclusion: Polyclonal antibodies administered for serotherapy reversed the toxic effects and all biochemical parameters become normal after 6 h of treatment in albino mice in comparison to control.

Downloads

Download data is not yet available.

References

Blisnick AA, Simo L, Grillon C, Fasani F, Brule S, Le Bonniec B. The immunomodulatory effect of IrSPI, a tick salivary gland serine protease inhibitor involved in Ixodes ricinus tick feeding. Vaccines (Basel). 2019;7(4):148. doi: 10.3390/vaccines7040148, PMID 31614804.

Fogaca AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanova V. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front Immunol. 2021;12:628054. doi: 10.3389/fimmu.2021.628054, PMID 33737931.

Vancova M, Bily T, Simo L, Tous J, Horodysky P, Ruzek D. Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: Ixodidae): a new insight into the mechanism of blood-feeding. Sci Rep. 2020;10(1):165. doi: 10.1038/s41598-019-56811-2, PMID 31932602.

Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and tick-borne diseases of livestock in the Middle East and North Africa: a review. Insects. 2021;12(1):83. doi: 10.3390/insects12010083, PMID 33477991.

Obaid MK, Islam N, Alouffi A, Khan AZ, da Silva Vaz I Jr, Tanaka T. Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Front Cell Infect Microbiol. 2022;12:941831. doi: 10.3389/fcimb.2022.941831, PMID 35873149.

Hrnkova J, Schneiderova I, Golovchenko M, Grubhoffer L, Rudenko N, Cerny J. Role of zoo-housed animals in the ecology of ticks and tick-borne pathogens-a review. Pathogens. 2021;10(2):210. doi: 10.3390/pathogens10020210, PMID 33669161.

Feng LL, Liu L, Cheng TY. Proteomic analysis of saliva from partially and fully engorged adult female rhipicephalus microplus (Acari: Ixodidae). Exp Appl Acarol. 2019;78(3):443-60.

Galay RL, Umemiya Shirafuji R, Bacolod ET, Maeda H, Kusakisako K, Koyama J. Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress. PLOS ONE. 2014;9(3):e90661. doi: 10.1371/journal.pone.0090661, PMID 24594832.

Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci USA. 2009;106(4):1033-8. doi: 10.1073/pnas.0807961106, PMID 19171899.

Chmelar J, Kotal J, Kovarikova A, Kotsyfakis M. The use of tick salivary proteins as novel therapeutics. Front Physiol. 2019;10:812. doi: 10.3389/fphys.2019.00812, PMID 31297067.

Potet J, Beran D, Ray N, Alcoba G, Habib AG, Iliyasu G. Access to antivenoms in the developing world: a multidisciplinary analysis. Toxicon X. 2021;12:100086. doi: 10.1016/j.toxcx.2021.100086, PMID 34786555.

Hamza M, Knudsen C, Gnanathasan CA, Monteiro W, Lewin MR, Laustsen AH. Clinical management of snakebite envenoming: future perspectives. Toxicon X. 2021;11:100079. doi: 10.1016/j.toxcx.2021.100079, PMID 34430847.

World Health Organization, Stuart MC, Kouimtzi M, Hill SR. editors. WHO model formulary 2008. World Health Organization; 2009. p. 396-7.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. doi: 10.1016/S0021-9258(19)52451-6, PMID 14907713.

Spier RE. Animal cell technology: an overview. J Chem Technol Biotechnol. 1982;32(1):304-12.

Mendel B, Kemp A, Myers DK. A colorimetric micro-method for the determination of glucose. Biochem J. 1954;56(4):639-46. doi: 10.1042/bj0560639, PMID 13159895.

Friedemann TE, Haugen GE. Pyruvic acid II. J Biol Chem. 1943;147(2):415-42. doi: 10.1016/S0021-9258(18)72397-1.

Folin O. Standardized methods for the determination of uric acid in unlaked blood and in urine. J Biol Chem. 1933;101(1):111-25. doi: 10.1016/S0021-9258(18)75918-8.

Abel LL, Levy BB, Brodie BB, Kendall FE. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952;195(1):357-66. doi: 10.1016/S0021-9258(19)50907-3, PMID 14938387.

Folch J, Lees M, Sloane Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. doi: 10.1016/S0021-9258(18)64849-5, PMID 13428781.

Spies JR. 76 Colorimetric procedures for amino acids. In: Colowich SP, Kalpan NO, editors. Methods in enzymology. Academic Press; 1957. p. 467-77. doi: 10.1016/S0076-6879(57)03417-5.

Andersch MA, Szczypinski AJ. Use of p-nitrophenylphosphate as the substrate in determination of serum acid phosphatase. Am J Clin Pathol. 1947;17(7):571-4. doi: 10.1093/ajcp/17.7_ts.571, PMID 20256398.

Bergmeyer UH. Determination of alkaline phophatase and acid phosphatase was determined by using p-nitrophenyl phosphate, Method of enzymetic analysis. New York Acadmic Press; 1967. p. 1129.

Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56-63. doi: 10.1093/ajcp/28.1.56, PMID 13458125.

Annon TM. Sigma diagnostic: Lactate dehydrogenase (Quantitative, Colorimeteric determination in serum, urine and cerebrospinal fluid) at 400-500 nm. Procedure No. 500; 1984.

Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95. doi: 10.1016/0006-2952(61)90145-9, PMID 13726518.

Ouchterlony O. Diffusion-in-gel methods for immunological analysis. II. Prog Allergy. 1962;6:30-154. doi: 10.1159/000313795, PMID 14482809.

Sokal RR, Rohlf FJ. Introduction to biostatistics. San Francisco: W H Freeman and Company, Ltd.; 1973.

Banks BEC, Shipolini RA. Chemistry and pharmacology of honeybee venom. In: Piek T, editor. Venoms of hymenoptera. Biochemical, Pharmacological and Behavioral aspects. London: Acadmy Press; 1986. p. 329-16.

Jones RG, Corteling RL, Bhogal G, Landon J. A novel Fab-based antivenom for the treatment of mass bee attacks. Am J Trop Med Hyg. 1999;61(3):361-6. doi: 10.4269/ajtmh.1999.61.361, PMID 10497971.

Muller U, Akdis CA, Fricker M, Akdis M, Blesken T, Bettens F. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J Allergy Clin Immunol. 1998;101(6 Pt 1):747-54. doi: 10.1016/S0091-6749(98)70402-6, PMID 9648701.

Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol. 1998;160(7):3555-61. doi: 10.4049/jimmunol.160.7.3555, PMID 9531318.

Paull BR, Jacob GL, Yunginger JW, Gleich GJ. Comparison of binding of IgE and IgG antibodies to honeybee venom phospholipase-a. J Immunol. 1978;120(6):1917-23. doi: 10.4049/jimmunol.120.6.1917, PMID 659884.

Kemeny DM, Mackenziemills M, Harries MG, Youlten LJ, Lessof MH. Antibodies to purified bee venom proteins and peptides II. A detailed study of changes in IgE and IgG antibodies to individual bee venom antigens. Journal of Allergy and Clinical Immunology. 1983;72(4):376-85. doi: 10.1016/0091-6749(83)90503-1.

Lipps BV, Khan AA. Antigenic cross-reactivity among the venoms and toxins from unrelated diverse sources. Toxicon. 2000;38(7):973-80. doi: 10.1016/S0041-0101(99)00214-7.

Natu VS, Murthy RK, Deodhar KP. Efficacy of species-specific anti-scorpion venom serum (AScVS) against severe, serious scorpion stings (Mesobuthus tumulus concanesis Pocock)-an experience from rural hospital in Western Maharashtra. J Assoc Phys India. 2006;54:283-7.

Egner W, Ward C, Brown DL, Ewan PW. The frequency and clinical significance of specific IgE to both wasp (Vespula) and honey-bee (Apis) venoms in the same patient. Clin Exp Allergy. 1998;28(1):26-34. doi: 10.1046/j.1365-2222.1998.00176.x, PMID 9537776.

Rawat S, Laing G, Smith DC, Theakston D, Landon J. A new antivenom to treat eastern coral snake (Micrurus fulvius fulvius) envenoming. Toxicon. 1994;32(2):185-90. doi: 10.1016/0041-0101(94)90107-4, PMID 8153957.

Russell FE, Lauritzen L. Antivenins. Trans R Soc Trop Med Hyg. 1966;60(6):797-810. doi: 10.1016/0035-9203(66)90232-x, PMID 6005778.

Russell FE, Timmerman WF, Meadows PE. Clinical use of antivenin prepared from goat serum. Toxicon. 1970;8(1):63-5. doi: 10.1016/0041-0101(70)90175-3, PMID 5465748.

Sjostrom L, Al-Abdulla IH, Rawat S, Smith DC, Landon J. A comparison of ovine and equine antivenoms. Toxicon. 1994;32(4):427-33. doi: 10.1016/0041-0101(94)90294-1, PMID 8052997.

Khan SA, Humayun MZ, Jacob TM. A sensitive radioimmunoassay for isopentenyladenosine. Anal Biochem. 1977;83(2):632-5. doi: 10.1016/0003-2697(77)90067-7, PMID 603045.

Schumacher MJ, Schmidt JO, Egen NB, Lowry JE. Quantity, analysis, and lethality of European and Africanized honey bee venoms. Am J Trop Med Hyg. 1990;43(1):79-86. doi: 10.4269/ajtmh.1990.43.79, PMID 2200291.

Fernandez J, Soriano V, Mayorga L, Mayor M. Natural history of hymenoptera venom allergy in Eastern Spain. Clin Exp Allergy. 2005;35(2):179-85. doi: 10.1111/j.1365-2222.2005.02169.x, PMID 15725189.

Published

01-11-2023

How to Cite

YADAV, N., and R. K. UPADHYAY. “PRODUCTION OF POLYCLONAL ANTIBODIES AGAINST INDIAN CATTLE TICK RHIPICEPHALUS MICROPLUS SALIVA TOXINS AND ITS EFFICACY IN REVERSAL OF TOXIC EFFECTS IN ALBINO MICE”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 11, Nov. 2023, pp. 11-18, doi:10.22159/ijpps.2023v15i11.48954.

Issue

Section

Original Article(s)

Most read articles by the same author(s)