PRODUCTION OF POLYCLONAL ANTIBODIES AGAINST INDIAN PAPER WASP ROPALIDIA MARGINATA VENOM TOXINS AND THEIR EFFICACY IN THE REVERSAL OF TOXIC EFFECTS

Authors

  • RAVI KANT UPADHYAY Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India https://orcid.org/0000-0002-1264-3025
  • SIMRAN SHARMA Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur-273009, India

DOI:

https://doi.org/10.22159/ijpps.2024v16i2.49027

Keywords:

Polyclonal anti-venom antibody, Wasp toxins, Antiserum, Immunotherapy and reversal effect

Abstract

Objective: In this study, albino mice were injected with a sub-lethal dosage of purified wasp Ropalidia Marginata venom toxins to assess the effectiveness of polyclonal anti-venom antibodies.

Methods: To neutralize the toxic effects, polyclonal antibodies were generated by immunizing albino mice. The antibody underwent partial purification using ammonium sulphate treatment and octanoic acid precipitation. To detect the presence of antibodies in the antiserum, an immunodouble diffusion test was conducted using Ouchterlony's method (1962). This involved allowing both antigens and antibodies to diffuse radially towards each other from their respective wells. When they reached an equivalence zone, a precipitation complex of antigen and antibody became visible as a concentric band, indicating the development of the combination. To quantitatively determine the amount of antibodies in the antiserum, the equivalency zone approach was used.

Results: Experimental mice were injected with a combination containing 400, 800, and 1200 µg of pure antibody, which had been treated serum biomolecules, including metabolic enzymes, completely reversed in the experimental with 40% of the LD50 of wasp venom the elevated serum parameters were glucose, pyruvic acid, lipid, protein and free amino acid, reached to normal (100%) in the treated with 40% of LD50 of the venom and polyclonal treated after 6 h of administration. Anti-serum treatment also successfully normalized the alteration in serum enzyme just after 4h.

Similarly, anti-serum treatment also successfully normalized the alteration in serum enzyme just after 4h treated with 40% of LD50 of the venom. Serum ACP content was obtained as 125.35% after 40% of LD50 venom injection, which was get normalized up to 102.81% after 4 h of the anti-venom treatment. Serum ALP content of 114.8% elevation was reversed back to 102.40% after anti-venom treatment. The GPT level significantly reversed up to 102.5%, while it was 130% in the venom-treated mice. A complete reversal was obtained in GPT level, which was obtained as 104.54% in the venom-treated animal. Similarly, LDH which was elevated up to 112.45 % in venom-injected mice was successfully reversed up to 100.25% after anti-venom treatment. Similarly, Ache concentration was fully recovered after anti-venom treatment 6 h, all animals (group B-E) that had received 40% of the LD50 of venom treated with pure antiserum.

Conclusion: The venom-injected group showed a complete restoration of serum protein, free amino acid, uric acid, cholesterol, pyruvic acid, total lipid, and glucose level in experimental mice.

Downloads

Download data is not yet available.

References

Schmidt JO. Chemistry, pharmacological and chemical ecology of venoms. In: Piek T. editor. London: Venoms of the Hymenoptera Academic Press; 1986. p. 425-508.

Blum MS. Chemical defense in an arthropod. New York: Academic Press; 1981. p. 562.

Dotimas EM, Hider RC. Honeybee venom. Bee World. 1987;68(2):51-70. doi: 10.1080/0005772X.1987.11098915.

Hider RC. Honeybee venom: a rich source of pharmacologically active peptides. Endeavour. 1988;12(2):60-5. doi: 10.1016/0160-9327(88)90082-8, PMID 2458907.

Tunget CL, Clark RF. Invasion of the ”killer” bees: separating fact from fiction. Postgrad Med. 1993;94(2):92-102. doi: 10.1080/00325481.1993.11945694.

Greenberg M. Medical toxicology review: pearls of wisdom. 2nd ed. New York: McGraw-Hill Education/Medical; 2005.

Schumacher MJ, Egen NB. Significance of africanized bees for public health. A review. Arch Intern Med. 1995;155(19):2038-43. doi: 10.1001/archinte.1995.00430190022003, PMID 7575061.

Winston ML. The Africanized ”killer” bee: biology and public health. Q J Med. 1994;87(5):263-67. PMID 7938406.

Park R. Bee and hymenoptera stings. Nurse Week. 2005;13:55.

Schumacher MJ, Schmidt JO, Egen NB, Lowry JE. Quantity, analysis, and lethality of European and Africanized honey bee venoms. Am J Trop Med Hyg. 1990;43(1):79-86. doi: 10.4269/ajtmh.1990.43.79, PMID 2200291.

Wu QX, King MA, Donovan GR, Alewood D, Alewood P, Sawyer WH. Cytotoxicity of pilosulin 1, a peptide from the venom of the jumper ant Myrmecia pilosula. Biochim Biophys Acta. 1998;1425(1):74-80. doi: 10.1016/s0304-4165(98)00052-x. PMID 9813247.

Devaux C, Knibiehler M, Defendini ML, Mabrouk K, Rochat H, Van Rietschoten J. C-terminal amidation of apamin is important for biological activity as revealed by recombinant technology and chemical synthesis. Toxicon. 1996;34(10):1087. doi: 10.1016/0041-0101(96)83812-8.

Okamoto T, Isoda H, Kubota N, Takahata K, Takahashi T, Kishi T. Melittin cardiotoxicity in cultured mouse cardiac myocytes and its correlation with calcium overload. Toxicol Appl Pharmacol. 1995;133(1):150-63. doi: 10.1006/taap.1995.1136, PMID 7597704.

Schmid Antomarchi H, Jean Francois R, Romey G, Hugues M, Schmid A, Lazdunski M. The all-or-none role of innervations in the expression of apamin receptor and of apamin-sensitive Ca++-activated K+channel in mammalian skeletal muscle. Neurobiology. 1985;82:2188-91.

Edstrom A. Venomous and poisonous animals. Malabar: Krieger Publishing Company; 1992. p. 210.

Micaletto S, Ruetzler K, Bruesch M, Schmid Grendelmeier P. Honey bee venom re-challenge during specific immunotherapy: prolonged cardio-pulmonary resuscitation allowed survival in a case of near-fatal anaphylaxis. Allergy Asthma Clin Immunol. 2022;18(1):44. doi: 10.1186/s13223-022-00687-x, PMID 35655287.

Gülsen A, Ruëff F, Jappe U. Omalizumab ensures compatibility to bee venom immunotherapy (VIT) after VIT-induced anaphylaxis in a patient with systemic mastocytosis. Allergol Select. 2021;5:128-32. doi: 10.5414/ALX02196E, PMID 33733040.

Sahiner UM, Durham SR. Hymenoptera venom allergy: how does venom immunotherapy prevent anaphylaxis from bee and wasp stings? Front Immunol. 2019;10:1959. doi: 10.3389/fimmu.2019.01959, PMID 31497015.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265-75. doi: 10.1016/S0021-9258(19)52451-6, PMID 14907713.

Spies JR. 76 Colorimetric procedures for amino acids. In: Colowich SP, Kalpan NO. editors. Methods in enzymology. Academic Press; 1957. p. 467-77. doi: 10.1016/S0076-6879(57)03417-5.

Mendel B, Kemp A, Myers DK. A colorimetric micro-method for the determination of glucose. Biochem J. 1954;56(4):639-46. doi: 10.1042/bj0560639, PMID 13159895.

Friedemann TE, Haugen GE. Pyruvic acid II. J Biol Chem. 1943;147(2):415-42. doi: 10.1016/S0021-9258(18)72397-1.

Folin O. Standardized methods for the determination of uric acid in unlaked blood and in urine. J Biol Chem. 1933;101(1):111-25. doi: 10.1016/S0021-9258(18)75918-8.

Abel LL, Levy BB, Brodie BB, Kendall FE. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952;195(1):357-66. doi: 10.1016/S0021-9258(19)50907-3, PMID 14938387.

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-6. doi: 10.1021/ac60111a017.

Bergmeyer UH. Determination of alkaline phosphatase and acid phosphatase by using p-nitrophenyl phosphate. In: Method of enzymatic analysis. New York: New York Academic Press; 1967. p. 1129.

Reitman S, Frankel SA. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56-63. doi: 10.1093/ajcp/28.1.56, PMID 13458125.

Annon TM. Sigma diagnostic: Lactate dehydrogenase (Quantitative, Colorimetric determination in serum, urine, and cerebrospinal fluid) at 400-500 nm. Procedure; 1984. p. 500.

Ellman GL, Courtney KD, Andres V, Feather-stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95. doi: 10.1016/0006-2952(61)90145-9, PMID 13726518.

Ouchterlony O. Diffusion-in-gel methods for immunological analysis. II. Prog Allergy. 1962;6:30-154. doi: 10.1159/000313795, PMID 14482809.

Sokal RR, Rohlf FJ. Introduction to biostatistics. San Francisco: W H Freeman and Company, Ltd.; 1973.

Dongol Y, Paudel YP, Shrestha RK, Aryal G. Acute renal failure following multiple hornet stings. Clin Kidney J. 2012;5(2):158-61. doi: 10.1093/ckj/sfr171, PMID 29497520.

Fitzgerald KT, Flood AA. Hymenoptera stings. Clin Tech Small Anim Pract. 2006;21(4):194-204. doi: 10.1053/j.ctsap.2006.10.002, PMID 17265905.

Ciszowski K, Mietka Ciszowska A. Hymenoptera stings. Przegl Lek. 2007;64(4-5):282-9. PMID 17724887.

Danneels EL, Rivers DB, de Graaf DC. Venom proteins of the parasitoid wasp Nasonia vitripennis: the recent discovery of an untapped pharmacopee. Toxins. 2010;2(4):494-516. doi: 10.3390/toxins2040494, PMID 22069597.

Abt M, Rivers DB. Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J Invertebr Pathol. 2007;94(2):108-18. doi: 10.1016/j.jip.2006.09.004, PMID 17054979.

Przybilla B. Bee and wasp allergy-clinical picture and diagnosis. J Eur Acad Dermatol Venereol. 1999;9:84.

Brandeburgo MAM. Aggressive behavior of bees. Cienc Cult. 1990;42:1025-34.

Wu QX, King MA, Donovan GR, Alewood D, Alewood P, Sawyer WH. Cytotoxicity of pilosulin 1, a peptide from the venom of the jumper ant Myrmecia pilosula. Biochim Biophys Acta. 1998;1425(1):74-80. doi: 10.1016/s0304-4165(98)00052-x. PMID 9813247.

Hoffman DR. Hymenoptera venom proteins. Nat Toxins. 1996;2:169-86.

Nabil ZI, Hussein AA, Zalat SM, Rakha MKh. Mechanism of action of honey bee (Apis mellifera L.) venom on different types of muscles. Hum Exp Toxicol. 1998;17(3):185-90. doi: 10.1177/096032719801700311, PMID 9587789.

Jones RG, Corteling RL, Bhogal G, Landon J. A novel fab-based anti-venom for the treatment of mass bee attacks. Am J Trop Med Hyg. 1999;61(3):361-6. doi: 10.4269/ajtmh.1999.61.361, PMID 10497971.

Schumacher MJ, Egen NB, Tanner D. Neutralization of bee venom lethality by immune serum antibodies. Am J Trop Med Hyg. 1996;55(2):197-201. doi: 10.4269/ajtmh.1996.55.197, PMID 8780460.

Khan ZH, Lari FA, Ali Z. Preparation of toxoids from the venom of Pakistan species of snakes (Najanaja, Viperarusslii and Echiscarnatus). Japn J Sci Biol. 1997;30:19-23.

Russel FE, Lauritzen L. Antivenins. Trans R Soc Trop Med Hyg. 1996;60:797-801.

Sjostrom L, Al-Abdulla IH, Rawat S, Smith DC, Landon J. A comparison of ovine and equine anti-venoms. Toxicon. 1994;32(4):427-33. doi: 10.1016/0041-0101(94)90294-1. PMID 8052997.

Schumacher MJ, Schmidt JO, Egen NB, Lowry JE. Quantity, analysis, and lethality of European and Africanized honey bee venoms. Am J Trop Med Hyg. 1990;43(1):79-86. doi: 10.4269/ajtmh.1990.43.79, PMID 2200291.

Müller U, Helbling A, Berchtold E. Immunotherapy with honeybee venom and yellow jacket venom is different regarding efficacy and safety. J Allergy Clin Immunol. 1992;89(2):529-35. doi: 10.1016/0091-6749(92)90319-w, PMID 1740583.

Natu VS, Murthy RK, Deodhar KP. Efficacy of species-specific anti-scorpion venom serum (AScVS) against severe, serious scorpion stings (Mesobuthus tamulus concanesis Pocock)–an experience from rural hospital in western Maharashtra. J Assoc Physicians India. 2006;54:283-7. PMID 16944610.

Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol. 1998;160(7):3555-61. doi: 10.4049/jimmunol.160.7.3555, PMID 9531318.

Paull BR, Jacob GL, Yunginger JW, Gleich GJ. Comparison of binding of IgE and IgG antibodies to honeybee venom phospholipase-a. J Immunol. 1978;120(6):1917-23. doi: 10.4049/jimmunol.120.6.1917, PMID 659884.

Kemeny DM, Lessof MH, Patel S, Youlten LJ, Williams A, Lambourn E. IgG and IgE antibodies after immunotherapy with bee and wasp venom. Int Arch Allergy Appl Immunol. 1989;88(1-2):247-9. doi: 10.1159/000234799, PMID 2707888.

Adib Tezer H, Bayerl C. Honeybee and wasp venom allergy: sensitization and immunotherapy. J Dtsch Dermatol Ges. 2018;16(10):1228-47. doi: 10.1111/ddg.13670, PMID 30300499.

Matysiak J, Matuszewska E, Kowalski ML, Kosinski SW, Smorawska Sabanty E, Matysiak J. Association between venom immunotherapy and changes in serum protein-peptide patterns. Vaccines. 2021;9(3). doi: 10.3390/vaccines9030249, PMID 33809001.

Lipps BV, Khan AA. Antigenic cross-reactivity among the venoms and toxins from unrelated diverse sources. Toxicon. 2000;38(7):973-80. doi: 10.1016/s0041-0101(99)00214-7, PMID 10728834.

Blank S, Grosch J, Ollert M, Bilo MB. Precision medicine in hymenoptera venom allergy: diagnostics, biomarkers, and therapy of different endotypes and phenotypes. Front Immunol. 2020;11:579409. doi: 10.3389/fimmu.2020.579409, PMID 33193378.

Published

01-02-2024

How to Cite

UPADHYAY, R. K., and S. SHARMA. “PRODUCTION OF POLYCLONAL ANTIBODIES AGAINST INDIAN PAPER WASP ROPALIDIA MARGINATA VENOM TOXINS AND THEIR EFFICACY IN THE REVERSAL OF TOXIC EFFECTS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 2, Feb. 2024, pp. 36-45, doi:10.22159/ijpps.2024v16i2.49027.

Issue

Section

Original Article(s)

Most read articles by the same author(s)