ANTIOXIDANT, ANTICANCER AND MOLECULAR DOCKING STUDIESOF NOVEL 5-BENZYLIDENE SUBSTITUTED RHODANINE DERIVATIVES
DOI:
https://doi.org/10.22159/ijpps.2023v15i7.47421Keywords:
Antioxidant, Anticancer, Rhodanine derivatives, Computational evaluationAbstract
Objective: The primary objective was to study the in vitro antioxidant and anticancer evaluation of novel 5-benzylidene substituted rhodanine derivatives and molecular docking studies of the most active compounds with 3 different anticancer targets.
Methods: Antioxidant potential of 5-benzylidene substituted rhodanine derivatives were studied by DPPH assay, anticancer evaluation was done by MTT assay and Computational evaluation were done using various softwares such as ACD Lab Chemsketch 12.0, molinspiration and Discovery Studio 2021.
Results: Compound 3j exhibited the highest antioxidant activity with an IC50 value of 31.21. Other compounds 3b, 3d and 3f also showed moderate antioxidant potential. The Antioxidant study showed a good correlation with molecular docking studies. In vitro anticancer assay results showed that compound 3a has an IC50 value<62.5 against HeLa cell lines. All the other compounds showed only moderate activity. Out of the ten synthesized derivatives, compounds 3d and 3j showed good docking scores with 3 different anticancer targets.
Conclusion: Ten novel rhodanine derivatives which has been studied can be developed into potent antioxidant and anticancer agents in future.
Downloads
References
Sagar P, Cleistanthin RR, Shows B. Apotent cytotoxic activity against colorectal cancer cells. Asian J Pharm Clin Res. 2022 Mar 7;15(3):94-8.
Michael RZ. Evaluation of in vitro anticancer activity of aerial parts of Avicennia alba plant methanolic extract against hela and mcf-7 cell lines. Asian J Pharm Clin Res. 2021 Jul 29;14(6):73-9.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.
Yin LJ, Bin Ahmad Kamar AKD, Fung GT, Liang CT, Avupati VR. Review of anticancer potentials and structure-activity relationships (SAR) of rhodaninederivatives. Biomed Pharmacother. 2022 Jan;145:112406. doi: 10.1016/j.biopha.2021.112406. Epub 2021 Nov 13. PMID 34785416.
Mermer A. The importance of rhodanine scaffold in medicinal chemistry: a comprehensive overview. Mini Rev Med Chem. 2021;21(6):738-89. doi: 10.2174/1389557521666201217144954, PMID 33334286.
Azizmohammadi M, Khoobi M, Ramazani A, Emami S, Zarrin A, Firuzi O. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur J Med Chem. 2013;59:15-22. doi: 10.1016/j.ejmech.2012.10.044. PMID 23202485.
Ramesh V, Ananda Rao B, Sharma P, Swarna B, Thummuri D, Srinivas K. Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo[h]quinoline scaffolds as anticancer agents. Eur J Med Chem. 2014;83:569-80. doi: 10.1016/j.ejmech.2014.06.013. PMID 24996143.
Ali Muhammad S, Ravi S, Thangamani A. Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer activity. Med Chem Res. 2016;25(5):994-1004. doi: 10.1007/s00044-016-1545-7.
Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem. 2016;117:33-46. doi: 10.1016/j.ejmech.2016.03.089. PMID 27089210.
Szychowski KA, Leja ML, Kaminskyy DV, Binduga UE, Pinyazhko OR, Lesyk RB. Study of novel anticancer 4-thiazolidinone derivatives. Chem Biol Interact. 2017;262:46-56. doi: 10.1016/j.cbi.2016.12.008. PMID 27965178.
Min G, Lee SK, Kim HN, Han YM, Lee RH, Jeong DG. Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells. Bioorg Med Chem Lett. 2013;23(13):3769-74. doi: 10.1016/j.bmcl.2013.04.092. PMID 23726031.
Havrylyuk D, Mosula L, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur J Med Chem. 2010;45(11):5012-21. doi: 10.1016/j.ejmech.2010.08.008. PMID 20810193.
Moorthy BT, Ravi S, Srivastava M, Chiruvella KK, Hemlal H, Joy O. Novel rhodanine derivatives induce growth inhibition followed by apoptosis. Bioorg Med Chem Lett. 2010;20(21):6297-301. doi: 10.1016/j.bmcl.2010.08.084. PMID 20832305.
James JP, Aiswarya TC, Priya S, Jyothi D, Dixit SR. Structure-based multitargeted molecular docking analysis of pyrazole-condensed heterocyclics against lung cancer. Int J App Pharm. 2021 Nov 7;13(6):157-69. doi: 10.22159/ijap.2021v13i6.42801.
Li W, Zhai X, Zhong Z, Li G, Pu Y, Gong P. Design, synthesis and evaluation of novel rhodanine-containing sorafenib analogs as potential antitumor agents. Arch Pharm (Weinheim). 2011;344(6):349-57. doi: 10.1002/ardp.201000326, PMID 21433057.
El Nezhawy AOH, Ramla MM, Khalifa NM, Abdulla MM. Synthesis and antioxidant activity of some thiazolidin-4-one derivatives. Monatsh Chem. 2009;140(5):531-9. doi: 10.1007/s00706-008-0085-3.
Chen YH, Yang ZS, Wen CC, Chang YS, Wang BC, Hsiao CA. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem. 2012;134(2):717-24. doi: 10.1016/j.foodchem.2012.02.166. PMID 23107683.
Berczynski P, Kładna A, Piechowska T, Kruk I, Bozdag Dundar O, Aboul Enein HY. Studies on the antioxidant activity of some thiazolidinedione, imidazolidinedione and rhodanine derivatives having a flavone core. Luminescence. 2014;29(8):1107-12. doi: 10.1002/bio.2667, PMID 24733694.
Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011;13(4):361-6. doi: 10.1016/j.cmet.2011.03.010. PMID 21459321.
Mathew C, Saraswati B, Lal N, Varkey J. Design, synthesis and antimicrobial studies of 5-benzylidene substituted rhodanine containing heterocycles. Int J Pharm Pharm Sci. 2021;13(5):28-34. doi: 10.22159/ijpps.2021v13i5.40106.
Sunitha D. A review on antioxidant methods. Asian J Pharm Clin Res. 2016;9(8):14-32. doi: 10.22159/ajpcr.2016.v9s2.13092.
Diller DJ, Merz KM. High throughput docking for library design and library prioritization. Proteins. 2001;43(2):113-24. doi: 10.1002/1097-0134(20010501)43:2<113::aid-prot1023>3.0.co;2-t. PMID 11276081.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.
Tamilvanan T, Hopper W. High-throughput virtual screening and docking studies of matrix protein vp40 of Ebola virus. Bioinformation. 2013;9(6):286-92. doi: 10.6026/97320630009286, PMID 23559747.
Szumilak MA, Lewgowd WA, Stanczak A. In silico adme studies of polyamine conjugates as potential anticancer drugs. Acta Pol Pharm. 2016;73(5):1191-200. PMID 29638059.
Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412-22. doi: 10.1007/s13197-011-0251-1, PMID 23572765.
Khare N, Kapoor A. Antioxidant evaluation of 2,4-thiazolidinedione and rhodanine derivatives. Pharm Lett. 2016;8(14):38-46.
Ozen C, Ceylan Unlusoy M, Aliary N, Ozturk M, Bozdag Dundar O. Thiazolidinedione or rhodanine: a study on synthesis and anticancer activity comparison of novel thiazole derivatives. J Pharm Pharm Sci. 2017;20(1):415-27. doi: 10.18433/J38P9R, PMID 29197428.
Krithika U, Prabitha P, Mandal SP, Yuvaraj S, Priya D, Wadhwani AD. Development of novel rhodanine analogs as anticancer agents: design, synthesis, evaluation and CoMSIA study. Med Chem. 2021;17(3):216-29. doi: 10.2174/1573406416666200610191002, PMID 32520692.
Published
How to Cite
Issue
Section
Copyright (c) 2023 CICI MATHEW, NAND LAL, LAKSHMI S., ASWATHY T. R., JOYAMMA VARKEY
This work is licensed under a Creative Commons Attribution 4.0 International License.