DIABETIC RETINOPATHY: AN INCLUSIVE REVIEW ON CURRENT TREATMENT AND MANAGEMENT APPROACHES
DOI:
https://doi.org/10.22159/ajpcr.2018.v11i11.26949Keywords:
Diabetic retinopathy, Posterior segment of the eye, Diabetic macular edema, NanoparticlesAbstract
Diabetic retinopathy (DR) is a complication which occurs due to diabetes mellitus leading to loss of vision and hindering the quality of patient life by damaging the layer of retina at the posterior segment of the eye. According to the survey around 285 million peoples are suffering from visual loss out of these 65% of people are more than 50 years old and 82% of blind patients are more than 50 years old. The diseases that occur in the posterior segment of the eye like, cytomegalovirus retinitis, posterior uveitis, age related macular degeneration and diabetic retinopathy needs a novel delivery system that can improve the concentration of drugs that reaches posterior segment of the eye. The development of new drug delivery system gained more importance in the field of research in which nanotechnology is the most considered approach. The nanotechnology-based systems such as nanoparticles, nanoliposomes, niosomes, nanomicelles, nanoemulsions, nanogels, cyclodextrins, dendrimers, and quantum dots are developed as a new formulation for drug delivery. The rationale behind the nanoparticle systems is its ability to formulate a sustained, controlled release dosage form, painless, safe, non-invasive system to overcome the major barriers in the treatment of DR. Based on the nanoparticles, some approaches are exploited for more effective conveyance of drug toward the posterior segment. Thus, these advanced delivery systems progress the therapeutic efficacy of the drug and patient's obedience and life quality. In this review, the new therapeutic treatments and their managements were discussed and methods of drug delivery to reach the posterior segment of eye.
Downloads
References
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z, et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017;7:281-91.
Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine 2017;13:2101-13.
Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID. Implants for drug delivery to the posterior segment of the eye: A focus on stimuli-responsive and tunable release systems. J Control Release 2014;196:208-21.
Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014;6:422-37.
Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008;13:144-51.
Available from: http://www.eyecarevisioncenter.com/eye-health/diabetic-retinopathy/.
Available from: https://www.acucela.com/pipeline/development/emixustat-dr/index.html.
Grant MB, Davis MI, Caballero S, Feoktistov I, Biaggioni I, Belardinelli L. Proliferation, migration, and ERK activation in human retinal endothelial cells through A2B adenosine receptor stimulation. Invest Ophthalmol Vis Sci 2001;42:2068-73.
Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003;22:1-29.
Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev 2014;11:CD011234.
Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond) 2014;28:510-20.
Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: A Randomized clinical trial. JAMA 2015;314:2137-46.
Das A, McGuire PG, Rangasamy S. Diabetic macular edema: Pathophysiology and novel therapeutic targets. Ophthalmology 2015;122:1375-94.
Tong L, Vernon SA, Kiel W, Sung V, Orr GM. Association of macular involvement with proliferative retinopathy in Type 2 diabetes. Diabet Med 2001;18:388-94.
Ford JA, Lois N, Royle P, Clar C, Shyangdan D, Waugh N, et al. Current treatments in diabetic macular oedema: Systematic review and meta-analysis. BMJ Open 2013;3 :???.
Salam A, DaCosta J, Sivaprasad S. Anti-vascular endothelial growth factor agents for diabetic maculopathy. Br J Ophthalmol 2010;94:821-6.
Virgili G, Menchini F, Casazza G, Hogg R, Das RR, Wang X, et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev 2015;1:CD008081.
Grover D, Li TJ, Chong CC. Intravitreal steroids for macular edema in diabetes. Cochrane Database Syst Rev 2008;1:CD005656.
Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol 2015;9:1321-35.
Sanford M. Fluocinolone acetonide intravitreal implant (Iluvien®). Drugs 2013;73:187-93.
Wang JH, Ling D, Tu L, van Wijngaarden P, Dusting GJ, Liu GS. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther 2017;173:1-8.
Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int 2014;2014:801269.
Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. Diabetic retinopathy. Diabetes Care 2003;26:226-9.
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20.
Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M, et al. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes 2004;53:2404-11.
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107:1058-70.
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010;106:1319-31.
Wang W, Matsukura M, Fujii I, Ito K, Zhao JE, Shinohara M, et al. Inhibition of high glucose-induced VEGF and ICAM-1 expression in human retinal pigment epithelium cells by targeting ILK with small interference RNA. Mol Biol Rep 2012;39:613-20.
Nerlich AG, Sauer U, Kolm-Litty V, Wagner E, Koch M, Schleicher ED, et al. Expression of glutamine: Fructose-6-phosphate amidotransferase in human tissues: Evidence for high variability and distinct regulation in diabetes. Diabetes 1998;47:170-8.
Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: Signal transduction and O-glcNAc. Science 2001;291:2376-8.
Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 2011;11:244-52.
Coucha M, Elshaer SL, Eldahshan WS, Mysona BA, El-Remessy AB. Molecular mechanisms of diabetic retinopathy: Potential therapeutic targets. Middle East Afr J Ophthalmol 2015;22:135-44.
Deschler EK, Sun JK, Silva PS. Side-effects and complications of laser treatment in diabetic retinal disease. Semin Ophthalmol 2014;29:290-300.
Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci 2013;110:16586-91.
Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E. Anti-vascular endothelial growth factor for diabetic macular oedema: A network meta-analysis. Cochrane Database Syst Rev 2017;6:CD007419.
Intensive Blood-glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33). UK prospective diabetes study (UKPDS) group. Lancet 1998;352:837-53.
Nordwall M, Abrahamsson M, Dhir M, Fredrikson M, Ludvigsson J, Arnqvist HJ. Impact of HbA1c, followed from onset of Type 1 diabetes, on the development of severe retinopathy and nephropathy: The VISS study (vascular diabetic complications in Southeast Sweden). Diabetes Care 2015;38:308-15.
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy: III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 1984;102:527-32.
Beulens JW, Patel A, Vingerling JR, Cruickshank JK, Hughes AD, Stanton A, et al. Effects of blood pressure lowering and intensive glucose control on the incidence and progression of retinopathy in patients with Type 2 diabetes mellitus: A randomised controlled trial. Diabetologia 2009;52:2027-36.
Zhang L, Krzentowski G, Albert A, Lefebvre PJ. Risk of developing retinopathy in diabetes control and complications trial Type 1 diabetic patients with good or poor metabolic control. Diabetes Care 2001;24:1275-9.
Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: The FIND-eye study. Invest Ophthalmol Visual Sci 2008;49:3839-45.
Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 1997;13:37-50.
Mason JO, Nixon PA, White MF. Intravitreal injection of bevacizumab (Avastin) as adjunctive treatment of proliferative diabetic retinopathy. Am J Ophthalmol 2006;142:685-8.
Bysell H, MÃ¥nsson R, Hansson P, Malmsten M. Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev 2011;63:1172-85.
Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012;119:789-801.
Ferraz DA, Vasquez LM, Preti RC, Motta A, Sophie R, Bittencourt MG, et al. A randomized controlled trial of panretinal photocoagulation with and without intravitreal ranibizumab in treatment-naive eyes with non–high-risk proliferative diabetic retinopathy. Retina 2015;35:280-7.
Izzedine H. Anti-VEGF cancer therapy in nephrology practice. Int J Nephrol 2014;2014:143426.
Zhu M, Chew JK, Broadhead GK, Luo K, Joachim N, Hong T, et al. Intravitreal ranibizumab for neovascular age-related macular degeneration in clinical practice: Five-year treatment outcomes. Graefes Arch Clin Exp Ophthalmol 2015;253:1217-25.
Adamis AP, Altaweel M, Bressler NM, Cunningham ET Jr., Davis MD, Goldbaum M, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 2006;113:23-8.
Macugen Diabetic Retinopathy Study Group. A phase II randomized double-masked trial of pegaptanib, an anti–vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005;112:1747-57.
Bhavsar AR. Diabetic retinopathy: The latest in current management. Retina 2006;26:S71-9.
Jonas JB. Intravitreal triamcinolone acetonide for diabetic retinopathy. Diabetic Retinopathy 2007;39:96-110.
Robinson MR, Lee SS, Kim H, Kim S, Lutz RJ, Galban C, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 2006;82:479-87.
Phillips K, Katz HR. A comparison of the efficacy of dexamethasone and loteprednol on endotoxin–induced uveitis in rodents following topical ocular administration. Invest Ophthalmol Visual Sci 2005;46:983.
Kim J, Chauhan A. Dexamethasone transport and ocular delivery from poly (hydroxyethyl methacrylate) gels. Int J Pharm 2008;353:205-22.
Campochiaro PA, Brown DM, Pearson A, Ciulla T, Boyer D, Holz FG, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 2011;118:626-3500.
Jaffe GJ, Yang CH, Guo H, Denny JP, Lima C, Ashton P. Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device. Invest Ophthalmol Visual Sci 2000;41:3569-75.
Radak D, Resanovic I, Isenovic ER. Link between oxidative stress and acute brain ischemia. Angiology 2014;65:667-76.
Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol 2013;2013:343560.
Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB. Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2011;2:96-103.
Wilkinson-Berka JL, Rana I, Armani R, Agrotis A. Reactive oxygen species, nox and angiotensin II in angiogenesis: Implications for retinopathy. Clin Sci (Lond) 2013;124:597-615.
Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc Diabetol 2005;4:5.
Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, et al. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem 2011;126:935-40.
Zhou W, Liu W, Zou L, Liu W, Liu C, Liang R, et al. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf B Biointerfaces 2014;117:330-7.
Laouini A, Fessi H, Charcosset C. Membrane emulsification: A promising alternative for vitamin E encapsulation within nano-emulsion. J Membr Sci 2012;423:85-96.
Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 2013;3:64-73.
Neves AR, Lúcio M, Martins S, Lima JL, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomed 2013;8:177.
Vanaja K, Wahl MA, Bukarica L, Heinle H. Liposomes as carriers of the lipid soluble antioxidant resveratrol: Evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sci 2013;93:917-23.
Nishiura H, Sugimoto K, Akiyama K, Musashi M, Kubota Y, Yokoyama T, et al. A novel nano-capsule of α-lipoic acid as a template of core-shell structure constructed by self-assembly. J Nanomed Nanotechol 2013;4:2.
Ruktanonchai U, Bejrapha P, Sakulkhu U, Opanasopit P, Bunyapraphatsara N, Junyaprasert V, et al. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. AAPS PharmSciTech 2009;10:227-34.
Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol 2009;136:71-4.
Rachmawati H. Curcumin nanoemulsion for transdermal application: Formulation and evaluation. Res Dev Nanotechnol Indon 2014;1:5.
Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 2006;58:1131-5.
Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 2005;57:2010-32.
Kern TS, Miller CM, Du Y, Zheng L, Mohr S, Ball SL, et al. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes 2007;56:373-9.
Klettner A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: Efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 2008;49:4523-7.
Bandello F, Preziosa C, Querques G, Lattanzio R. Update of intravitreal steroids for the treatment of diabetic macular edema. Ophthalmic Res 2014;52:89-96.
Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv Drug Deliv Rev 2006;58:1164-81.
Shen L, Mao J, Chen Y, Sun S, Han Y, Cheng L, et al. Transscleral permeation of subtenon triamcinolone in different vitreoretinal diseases. Ophthalmology 2015;122:649-51.
Goodman LS. Goodman and Gilman’s the Pharmacological Basis of Therapeutics. Vol. 1687. New Delhi: McGraw-Hill Companies; 2006. p. 1701-3.
Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 2015;95:307-22.
Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015;11:1603-11.
Jo DH, Lee TG, Kim JH. Nanotechnology and nanotoxicology in retinopathy. Int J Mol Sci 2011;12:8288-301.
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013;8:102.
Elsaid N, Somavarapu S, Jackson TL. Cholesterol-poly(ethylene) glycol nanocarriers for the transscleral delivery of sirolimus. Exp Eye Res 2014;121:121-9.
Lajunen T, Nurmi R, Kontturi L, Viitala L, Yliperttula M, Murtomäki L, et al. Light activated liposomes: Functionality and prospects in ocular drug delivery. J Controlled Release 2016;244:157-66.
Park W, Na K. Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:494-508.
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Controlled Release 2014;185:22-36.
Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: Recent advances. Res Rep Transdermal Drug Deliv 2015;4:23-33.
Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013;36:172-98.
Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012;2:82-95.
Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Controlled Release 2012;160:96-104.
Vaishya RD, Gokulgandhi M, Patel S, Minocha M, Mitra AK. Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis. AAPS PharmSciTech 2014;15:1238-51.
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system 3 Biotech 2015;5:123-7.
Al-Halafi AM. Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 2014;28:304-9.
Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci 2016;6:1-6.
Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv 2016;23:3712-23.
Kaur IP, Kakkar S. Nanotherapy for posterior eye diseases. J Controlled Release 2014;193:100-12.
Huu VA, Luo J, Zhu J, Zhu J, Patel S, Boone A, et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Controlled Release 2015;200:71-7.
Zhang J, Misra GP, Chang SP, Li X, Lowe TL. Charged nanogels efficiently overcome ocular biological barriers. Invest Ophthalmol Vis Sci 2011;52:429.
Jamard M, Hoare T, Sheardown H. Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Deliv Transl Res. 2016;6:648-59.
Loftsson T, Hreinsdóttir D, Stefánsson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: Aqueous dexamethasone eye drops. J Pharm Pharmacol 2007;59:629-35.
Hapiot F, Tilloy S, Monflier E. Cyclodextrins as supramolecular hosts for organometallic complexes. Chem Rev 2006;106:767-81.
Ribeiro AM, Figueiras A, Veiga F. Improvements in topical ocular drug delivery systems: Hydrogels and contact lenses. J Pharm Pharm Sci 2015;18:683-95.
Soliman OA, Mohamed EA, El-Dahan MS, Khatera NA. Potential use of cyclodextrin complexes for enhanced stability, anti-inflammatory efficacy, and ocular bioavailability of loteprednol etabonate. AAPS PharmSciTech 2017;18:1228-41.
Palladino G, Loizzo S, Fortuna A, Canterini S, Palombi F, Erickson RP, et al. Visual evoked potentials of niemann-Pick Type C1 mice reveal an impairment of the visual pathway that is rescued by 2-hydroxypropyl-ß-cyclodextrin. Orphanet J Rare Diseases 2015;10:133.
Bahadoran A, Moeini H, Bejo MH, Hussein MZ, Omar AR. Development of tat-conjugated dendrimer for transdermal DNA vaccine delivery. J Pharm Pharm Sci 2016;19:325-38.
Kambhampati SP, Clunies-Ross AJ, Bhutto I, Mishra MK, Edwards M, McLeod DS, et al. Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Invest Ophthalmol Visual Sci 2015;56:4413-24.
Yavuz B, Pehlivan SB, Vural İ, Ünlü N. In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci 2015;104:3814-23.
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 2010;673:1-25.
Pathak S, Cao E, Davidson MC, Jin S, Silva GA. Quantum dot applications to neuroscience: New tools for probing neurons and glia. J Neurosci 2006;26:1893-5.
Pollinger K, Hennig R, Ohlmann A, Fuchshofer R, Wenzel R, Breunig M, et al. Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application. Proc Natl Acad Sci 2013;110:6115-20.
Olson JL, Velez-Montoya R, Mandava N, Stoldt CR. Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degeneration. Invest Ophthalmol Visual Sci 2012;53:5713-21.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.