IDENTIFICATION OF FGFR INHIBITOR AS ST2 RECEPTOR/INTERLEUKIN-1 RECEPTOR-LIKE 1 INHIBITOR IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE DUE TO EXPOSURE TO E-CIGARETTES BY NETWORK PHARMACOLOGY AND MOLECULAR DOCKING PREDICTION

Authors

  • MUTHIA NURHIDAYAH Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI Depok 16424, Indonesia
  • FADILAH FADILAH Department of Medicinal Chemistry, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya no 6, Indonesia
  • ADE ARSIANTI Department of Medicinal Chemistry, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya no 6, Indonesia
  • ANTON BAHTIAR Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI Depok 16424, Indonesia https://orcid.org/0000-0002-2924-3677

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43784

Keywords:

COPD, ST2 Receptor, Interleukin-1 receptor-like 1, Network pharmacology, Molecular Docking

Abstract

Objective: This study was designed to search for candidate drugs that act on IL-33 and ST2, which was carried out using a bioinformatics approach.

Methods: We first analyzed Network Electronic Cigarette Smokes Predictions of therapeutic targets by Cytoscape. We collected from the Swiss TargetPrediction database [http://www. swisstargetprediction. ch/] by inputting each compound structure of the electronic cigarette smoke in SDF format. The target protein data is then supplemented with UniProt ID data to uniform protein identity. We then identified COPD Related Targets in Humans by Cytoscape. Subsequently, we identified key receptors in the pathogenesis of COPD. All target proteins that have a significant role in the pathogenesis of COPD exposed to cigarette smoke will be known from the combination of this network.

Results: Based on the validation results of the protein receptor for ST2, a protein is used as a receptor with PDB ID: 1IRA. After analyzed by PyMol software, a protein with PDB ID 1IRA it has no missing residue in its sequenceDrug candidates analyzed by the structural similarity with the native ligand using PubChem and DRUGBANK analysis are follow: N-acetylmannosamine, Aceneuramic acid, Ceramide AP, Ceramide NP, Hg9a-9, Nonanoyl-N-hydroxyethylglucamide, N-Acetyl-2-deoxy-2-amino-galactose, N-Acetyllactosamine, MLi/2,6-dimethyl-4-[6-[5-[1-methylcyclopropyl] oxy-1H-indazol-3-yl] pyrimidin-4-yl] morpholine, Terazosin, BMS-911543, NAG Inhibitor, FGFR Inhibitor/sodium; 2-amino-5-[1-methoxy-2-methylindolizine-3-carbonyl] benzoate. After docking, the smallest or more negative binding affinity values are obtained. The stronger the FGFR Inhibitor ligand showed the interaction with the Receptor with a binding affinity value of-9.0 kcal/mol with mode/position 0, and RMSD 0.0. The second smallest binding affinity value is the NAG ligand with a-8.5 kcal/mol with mode/position 0 and RMSD 0.0.

Conclusion: The findings revealed that FGFR Inhibitor was a suitable repurposing medication for anti-COPD development via the IL-33/ST-2 signaling pathway.

Downloads

Download data is not yet available.

References

Twyman L, Watts C, Chapman K, Walsberger SC. Electronic cigarette use in New South Wales, Australia: reasons for use, place of purchase and use in enclosed and outdoor places. Aust N Z J Public Health. 2018 Oct 1;42(5):491-6. doi: 10.1111/1753-6405.12822, PMID 30152006.

Bozier J, Chivers EK, Chapman DG, Larcombe AN, Bastian NA, Masso Silva JA, Byun MK, McDonald CF, Crotty Alexander LE, Ween MP. The evolving landscape of e-cigarettes: A systematic review of recent evidence. Chest. 2020 May 1;157(5):1362-90. doi: 10.1016/j.chest.2019.12.042. PMID 32006591.

Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018 Jul 1;198(1):67-76. doi: 10.1164/rccm.201710-2033OC, PMID 29481290.

Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulm Dis. 2011;6:413-21. doi: 10.2147/COPD.S10770, PMID 21857781.

Nugroho Eko Wd, Lestari Dwii Nmb. The role of pulmonary rehabilitation in acute exacerbations of chronic obstructive pulmonary disease. Rahmad, Narasati S. Int J Appl Pharm. 2020 Oct 15;12:39-40.

Herr C, Han G, Li D, Tschernig T, Dinh QT, Beißwenger C. Combined exposure to bacteria and cigarette smoke resembles characteristic phenotypes of human COPD in a murine disease model. Exp Toxicol Pathol. 2015;67(3):261-9. doi: 10.1016/j.etp.2015.01.002, PMID 25601416.

Chen J, Zhou H, Wang J, Zhang B, Liu F, Huang J. Therapeutic effects of resveratrol in a mouse model of HDM-induced allergic asthma. Int Immunopharmacol. 2015;25(1):43-8. doi: 10.1016/j.intimp.2015.01.013, PMID 25617148.

Milevoj Kopcinovic L, Domijan AM, Posavac K, Cepelak I, Zanic Grubisic T, Rumora L. Systemic redox imbalance in stable chronic obstructive pulmonary disease. Biomarkers. 2016 Nov 16;21(8):692-8. doi: 10.3109/1354750X.2016.1172110, PMID 27121533.

Barnes PJ. Inhaled corticosteroids in COPD: A controversy. Respiration. 2010;80(2):89-95. doi: 10.1159/000315416, PMID 20501985.

Boardman C, Chachi L, Gavrila A, Keenan CR, Perry MM, Xia YC. Mechanisms of glucocorticoid action and insensitivity in airways disease. Pulm Pharmacol Ther. 2014;29(2):129-43. doi: 10.1016/j.pupt.2014.08.008, PMID 25218650.

Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541-58. doi: 10.1042/CS20160487, PMID 28659395.

Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017 Sep 19;9(9):CD002309–CD002309. doi: 10.1002/14651858.CD002309.pub5.

Kawamatawong T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis. 2017 Apr;9(4):1144-54. doi: 10.21037/jtd.2017.03.116, PMID 28523172.

Khan PA, Sujala A, Nousheen BbS, Fatima AF, Ala HT, Reddy Abt P. A comparative evaluation of the efficacy of triple-drug therapy with dual drug therapy in COPD patients. Int J Pharm Pharm Sci. 2018 Apr 1;10(4):105-9. doi: 10.22159/ijpps.2018v10i4.24529.

Unni A, Jayaprakash AK, McY P, Drug UD. Utilization pattern in chronic obstructive pulmonary disease inpatients at a tertiary care Hospital. Int J Pharm Pharm Sci. 2015 Nov 1;7(11):389-91.

Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5(1):248. doi: 10.1038/s41392-020-00345-x, PMID 33110061.

Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA, Wiesmann C. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors-insight into heterotrimeric IL-1 signaling complexes. Structure. 2009;17(10):1398-410. doi: 10.1016/j.str.2009.08.009, PMID 19836339.

Qiu C, Li Y, Li M, Li M, Liu X, McSharry C. Anti-interleukin-33 inhibits cigarette smoke-induced lung inflammation in mice. Immunology. 2013 Jan;138(1):76-82. doi: 10.1111/imm.12020, PMID 23078031.

Cunningham A, McAdam K, Thissen J, Digard H. The evolving E-cigarette: comparative chemical analyses of E-cigarette vapor and cigarette smoke. Front Toxicol. 2020;2:7. doi: 10.3389/ftox.2020.586674.

Gfeller D, Grosdidier A, Wirth M, Daina, Michielin O, Zoete V. Swiss target prediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32-8. doi: 10.1093/nar/gku293.

Han L, Wang Y, Bryant SH. A survey of across-target bioactivity results of small molecules in PubChem. Bioinformatics. 2009 Sep 1;25(17):2251-5. doi: 10.1093/bioinformatics/btp380, PMID 19549631.

Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota Madi A, Olender T, Golan Y, Stelzer G, Harel A, Lancet D. GeneCards version 3: the human gene integrato. Database (Oxford) Version 3. 2010 Jan 1;2010:baq020. doi: 10.1093/database/baq020, PMID 20689021.

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 Jan 28;43:D789-98. doi: 10.1093/nar/gku1205, PMID 25428349.

Wu L, Chen Y, Yi J, Zhuang Y, Cui L, Ye C. Mechanism of action of Bu-Fei-Yi-Shen formula in treating chronic obstructive pulmonary disease based on network pharmacology analysis and molecular docking validation. BioMed Res Int. 2020;2020:9105972. doi: 10.1155/2020/9105972.

Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67-72. doi: 10.1016/j.biosystems.2014.11.005. PMID 25451770.

Rao VS, Srinivas K, Sujini GN, Kumar GNS. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648. doi: 10.1155/2014/147648.

Zhang Y, Gao P, Yuan JS. Plant protein-protein interaction network and interactome. Curr Genomics. 2010 Mar;11(1):40-6. doi: 10.2174/138920210790218016, PMID 20808522.

Gore S, Sanz Garcia E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H. Validation of structures in the protein data bank. Structure. 2017;25(12):1916-27. doi: 10.1016/j.str.2017.10.009, PMID 29174494.

Majorek KA, Zimmerman MD, Grabowski M, Shabalin IG, Zheng H, Minor W. Assessment of crystallographic structure quality and protein-ligand complex structure validation. Wiley Online Books. 2020. p. 253-75. doi: 10.1002/9781118681121.

Laskowski RA, Jabłonska J, Pravda L, Varekova RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci. 2018 Jan 1;27(1):129-34. doi: 10.1002/pro.3289, PMID 28875543.

Sladek V, Yamamoto Y, Harada R, Shoji M, Shigeta Y, Sladek V. pyProGA-A PyMOL plugin for protein residue network analysis. Plos One. 2021 Jul 30;16(7):e0255167. doi: 10.1371/journal.pone.0255167. PMID 34329304.

Homsak E, Gruson D. Soluble ST2: A complex and diverse role in several diseases. Clin Chim Acta. 2020;507:75-87. doi: 10.1016/j.cca.2020.04.011, PMID 32305537.

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006 Jan 1;34:D668-72. doi: 10.1093/nar/gkj067, PMID 16381955.

Buhlmann S, Reymond JL. ChEMBL-likeness score and database GDBChEMBL. Front Chem. 2020;8:46. doi: 10.3389/fchem.2020.00046, PMID 32117874.

Opo FADM, Rahman MM, Ahammad F, Ahmed I, Bhuiyan MA, Asiri AM. Structure-based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci Rep. 2021;11(1):40-9. doi: 10.1038/s41598-021-83626-x, PMID 33603068.

Sargis D, J OA. Small-molecule library screening by docking with PyRx. J Chem Biol. 2014:243-50.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-504. doi: 10.1101/gr.1239303, PMID 14597658.

Kim RY, Oliver BG, Wark PAB, Hansbro PM, Donovan C. COPD exacerbations: targeting IL-33 as a new therapy. Lancet Respir Med. 2021 Oct 31;9(11):1213-4. doi: 10.1016/S2213-2600(21)00182-X, PMID 34302759.

Pinto SM, Subbannayya Y, Rex DAB, Raju R, Chatterjee O, Advani J. A network map of IL-33 signaling pathway. J Cell Commun Signal. 2018;12(3):615-24. doi: 10.1007/s12079-018-0464-4, PMID 29705949.

Berman HM. The protein data bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.

Published

07-03-2022

How to Cite

NURHIDAYAH, M., FADILAH, F., ARSIANTI, A., & BAHTIAR, A. (2022). IDENTIFICATION OF FGFR INHIBITOR AS ST2 RECEPTOR/INTERLEUKIN-1 RECEPTOR-LIKE 1 INHIBITOR IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE DUE TO EXPOSURE TO E-CIGARETTES BY NETWORK PHARMACOLOGY AND MOLECULAR DOCKING PREDICTION. International Journal of Applied Pharmaceutics, 14(2), 256–266. https://doi.org/10.22159/ijap.2022v14i2.43784

Issue

Section

Original Article(s)

Most read articles by the same author(s)