PREDICTION OF ACTIVE COMPOUNDS OF MUNTINGIA CALABURA AS POTENTIAL TREAT-MENT FOR CHRONIC OBSTRUCTIVE PULMONARY DISEASES BY NETWORK PHARMACOLOGY INTEGRATED WITH MOLECULAR DOCKING
DOI:
https://doi.org/10.22159/ijap.2023v15i1.46281Keywords:
COPD, e-cigarettes, Muntingia Calabura, Cytoscape, Molecular docking, Protease inhibitorAbstract
Objective: Electronic cigarettes (E-Cigarettes) are often advertised as a safe alternative to smoke cessation. The number of E-Cigarettes users (vapers) has increased in many countries. The health impact of E-Cigarettes research topics still counting constitutes initiating Chronic Obstructive Pulmonary Disease (COPD). This research aimed to analyze the interaction between genes from E-Cigarettes causing COPD with Muntingia Calabura leaves, which has umpteen pharmacological effects through Bioinformatics.
Methods: The related genes in E-Cigarettes compounds underlying COPD conditions were screened and intersected towards M. Calabura's genes target. The constructed networks were analyzed for their protein-protein interaction and pathway possibilities. The gene with the best betweenness centrality, closeness centrality, and degree value was validated using molecular docking methods for its interaction with M. Calabura leaves.
Results: 12 target genes of M. Calabura and COPD were ALB, MMP-9, ICAM-1, GADPH, VEGFA, MPO, AKT1, ELANE, CXCR2, CFRTR, HSPA1A, and ADRB2. MMP-9 had the best value and then became the gene docked with M. Calabura compounds. The signaling propensity probably was PI3K/AKT pathway. M. Calabura has potentiated as a neutrophil inhibitor to balance protease/anti-protease. From molecular docking analyses, we found that 5,7-Dihydroxy-6-methoxyflavone gave the best conformation with MMP-9 with a binding affinity value of-10 kcal/mol.
Conclusion: M. Calabura can be considered a natural source of candidates for COPD treatment.
Downloads
References
National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division. Public health consequences of E-cigarettes; 2018. doi: 10.17226/24952.
Center for Disease Control and Prevention. CDC, smoking and tobacco use: outbreak of lung injury associated with E-cigarette use, or vaping. Centers for Disease Control and Prevention. 2019. p. 1-7. Available: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html. [Last accessed on 17 Nov 2021].
Kementerian Kesehatan Republik Indonesia. Laporan nasional riset kesehatan dasar. Kementerian Kesehatan RI; 2018. p. 1-582.
Kristina SA, Rosyidah KA, Ahsan A. Trend of electronic cigarette use among students in Indonesia. Int J Pharm Res. 2020;12(3):657-61. doi: 10.31838/ijpr/2020.12.03.099.
Pepper JK, Ribisl KM, Emery SL, Brewer NT. Reasons for start-ing and stopping electronic cigarette use. Int J Environ Res Public Health. 2014;11(10):10345-61. doi: 10.3390/ijerph111010345, PMID 25286168.
Garcia Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ, Jundi B. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax. 2016;71(12):1119-29. doi: 10.1136/thoraxjnl-2015-208039, PMID 27558745.
O’Farrell HE, Brown R, Brown Z, Milijevic B, Ristovski ZD, Bowman RV. E-cigarettes induce toxicity comparable to to-bacco cigarettes in airway epithelium from patients with COPD. Toxicol In Vitro. 2021;75:105204. doi: 10.1016/j.tiv.2021.105204. PMID 34186184.
Gellatly S, Pavelka N, Crue T, Schweitzer KS, Day BJ, Min E. Nicotine-free e-cigarette vapor exposure stimulates Il6 and mucin production in human primary small airway epithelial cells. J Inflamm Res. 2020;13:175-85. doi: 10.2147/JIR.S244434. PMID 32368126.
Li J, Huynh L, Cornwell WD, Tang MS, Simborio H, Huang J. Electronic cigarettes induce mitochondrial DNA damage and trigger TLR9 (toll-like receptor 9)-mediated atherosclerosis. Arterioscler Thromb Vasc Biol. 2021;41(2):839-53. doi: 10.1161/ATVBAHA.120.315556, PMID 33380174.
Herr C, Tsitouras K, Niederstraßer J, Backes C, Beisswenger C, Dong L. Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells. Respir Res. 2020;21(1):67. doi: 10.1186/s12931-020-1317-2, PMID 32164736.
Song MA, Freudenheim JL, Brasky TM, Mathe EA, McElroy JP, Nickerson QA. Biomarkers of exposure and effect in the lungs of smokers, nonsmokers, and electronic cigarette users. Cancer Epidemiol Biomarkers Prev. 2020;29(2):443-51. doi: 10.1158/1055-9965.EPI-19-1245.
Qasim H, Karim ZA, Silva Espinoza JC, Khasawneh FT, Rivera JO, Ellis CC. Short-term E-cigarette exposure increases the risk of thrombogenesis and enhances platelet function in mice. J Am Heart Assoc. 2018;7(15). doi: 10.1161/JAHA.118.009264, PMID 30021806.
Rodriguez Roisin R. Global initiative for chronic lung A guide for health care professionals global initiative for chronic lung, communications; 2009. p. 1-27.
Kim T, Kang J. Association between dual use of e-cigarette and cigarette and chronic obstructive pulmonary disease: an analysis of a nationwide representative sample from 2013 to 2018. BMC Pulm Med. 2021;21(1):231. doi: 10.1186/s12890-021-01590-8, PMID 34256746.
Hikichi M, Mizumura K, Maruoka S, Gon Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis. 2019;11(Suppl 17):S2129-40. doi: 10.21037/jtd.2019.10.43, PMID 31737341.
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5(1):248. doi: 10.1038/s41392-020-00345-x, PMID 33110061.
Shibata S, Miyake K, Tateishi T, Yoshikawa S, Yamanishi Y, Mi-yazaki Y. Basophils trigger emphysema development in a mur-ine model of COPD through IL-4–mediated generation of MMP-12–producing macrophages. Proc Natl Acad Sci USA. 2018;115(51):13057-62. doi: 10.1073/pnas.1813927115, PMID 30510003.
Guo Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Mechanisms of virus-induced airway immunity dysfunction in the pathogenesis of COPD disease, progression, and exacerba-tion. Front Immunol. 2020;11(June):1205. doi: 10.3389/fimmu.2020.01205, PMID 32655557.
Yusof MIM, Salleh MZ, Kek TL, Ahmat N, Azmin NFN, Zakaria ZA. Activity-guided isolation of bioactive constituents with anti-nociceptive activity from Muntingia Calabura leaves using the formalin test. Hindawi Publishing; 2013. p. 1-27.
Deering S, Purnamasari DP. Antiproliferative and apoptosis induction of methanolic extract from Muntingia Calabura leaves on colorectal cancer cell line. Biochem Pharmacol. 2017;139:125. doi: 10.1016/j. bcp.2017.06.002.
Chen JJ, Lee HH, Duh CY, Chen IS. Cytotoxic chalcones and fla-vonoids from the leaves of Muntingia Calabura. Planta Med. 2005;71(10):970-3. doi: 10.1055/s-2005-871223, PMID 16254834.
Subhashini R, Jeyam M. Computational identification of puta-tive drug targets in Malassezia globosa by subtractive genomics and protein cluster network approach. Int J Pharm Pharm Sci. 2017;9(9):215-21. doi: 10.22159/ijpps.2017v9i9.20609.
Lin JT, Chang YY, Chen YC, Shen BY, Yang DJ. Molecular mecha-nisms of the effects of the ethanolic extract of Muntingia Cala-bura Linn. fruit on lipopolysaccharide-induced pro-inflammatory mediators in macrophages. Food Funct. 2017;8(3):1245-53. doi: 10.1039/C6FO01735E.
Kuo WL, Liao HR, Chen JJ. Biflavans, flavonoids, and a dihydro-chalcone from the stem wood of Muntingia Calabura and their inhibitory activities on neutrophil pro-inflammatory responses. Molecules. 2014;19(12):20521-35. doi: 10.3390/molecules191220521, PMID 25493635.
Rofiee MS, Yusof MI, Abdul Hisam EE, Bannur Z, Zakaria ZA, Somchit MN. Isolating the metabolic pathways involved in the hepatoprotective effect of Muntingia Calabura against CCl4-induced liver injury using LC/MS Q-TOF. J Ethnopharmacol. 2015;166:109-18. doi: 10.1016/j.jep.2015.03.016, PMID 25792013. jep.2015.03.016.
Sari SA, Ernita M, Mara MN, AR MR. Identification of active compounds on Muntingia Calabura. L. Leaves using different polarity solvents. Indonesian Journal of Chemical Science and Technology (IJCST). 2020;3(1):1. doi: 10.24114/ijcst.v3i1.18309.
Buhian WPC, Rubio RO, Valle DL, Martin Puzon JJ. Bioactive metabolite profiles and anti-microbial activity of ethanolic ex-tracts from Muntingia Calabura L. leaves and stems. Asian Pa-cific Journal of Tropical Biomedicine. 2016;6(8):682-5. doi: 10.1016/j.apjtb.2016.06.006.
A. NM Ansori, VD Kharisma, TI Solikhah Muhammad Ansori AN, Kharisma VD, Intan Solikhah T. Medicinal properties of Muntingia Calabura L.: a review. Research Journal of Pharmacy and Technology. 2021;14(8):4509-12. doi: 10.52711/0974-360X.2021.00784.
Cao J, Lei L, Wang K, Sun J, Qiao Y, Duan J. A network pharmacology approach to predict the proangiogenesis mechanism of Huangqi-Honghua herb pair after cerebral ischemia. Evidence-Based Complementary and Alternative Medicine. 2021;2021:9834856. doi: 10.1155/2021/9834856, PMID 33953789.
A. Cunningham A, McAdam K, Thissen J, Digard H. The evolving E-cigarette: comparative chemical analyses of E-cigarette vapor and cigarette smoke. Frontiers in Toxicology. 2020;2:586674. doi: 10.3389/ftox.2020.586674, PMID 35296117.
Li M, Li D, Tang Y, Wu F, Wang J. Cytocluster: A cytoscape plugin for cluster analysis and visualization of biological net-works. International Journal of Molecular Sciences. 2017;18(9). doi: 10.3390/ijms18091880, PMID 28858211.
Han L, Wei XX, Zheng YJ, Zhang LL, Wang XM, Yang HY. Potential mechanism prediction of cold-damp plague formula against COVID-19 via network pharmacology analysis and molecular docking. Chinese Medicine (United Kingdom). 2020;15(1):1–1678. doi: 10.1186/s13020-020-00360-8, PMID 32754224.
Berman H, Henrick K, Nakamura H. Announcing the worldwide protein data bank. Nature Structural Biology. 2003;10(12):980. doi: 10.1038/nsb1203-980, PMID 14634627.
Li H, Hung A, Yang AWH. Herb-target virtual screening and network pharmacology for prediction of molecular mechanism of Danggui Beimu Kushen Wan for prostate cancer. Sci Rep. 2021;11(1):6656. doi: 10.1038/s41598-021-86141-1. PMID 33758314.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient op-timization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576.
Gou KJ, Zeng R, Ren XD, Dou QL, Yang QB, Dong Y. Anti-rheumatoid arthritis effects in adjuvant-induced arthritis in rats and molecular docking studies of Polygonum orientale L. extracts. Immunology Letters. 2018;201:59-69. doi: 10.1016/j.imlet.2018.11.009. PMID 30471320.
Liu J. Network pharmacology prediction and molecular dock-ing-based strategy to discover the potential pharmacological mechanism of HuaiHua san against ulcerative colitis. Drug Des Dev Ther. 2021;15(July):3255-76. doi: 10.2147/DDDT. S319786.
Chen JJ, Lee HH, Shinh CD, Liao CH, Chen IS, Chou TH. New dihydrochalcones and anti-platelet aggregation constituents from the leaves of Muntingia calabura. Planta Medica. 2007;73(6):572-7. doi: 10.1055/s-2007-967196, PMID 17516329.
Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MIM. Isolation and identification of antibacterial and cytotoxic com-pounds from the leaves of muntingia calabura l. J Ethnophar-macol. 2013;146(1):198-204. doi: 10.1016/j.jep.2012.12.032, PMID 23276785.jep.2012.12.032.
Jisha N, Vysakh A, Vijeesh V, Latha MS. Ethyl acetate fraction of Muntingia calabura L. exerts anti-colorectal cancer potential via regulating apoptotic and inflammatory pathways. Journal of Ethnopharmacology. 2020;261:113064. doi: 10.1016/j.jep.2020.113064. PMID 32505842.
Liao HR, Chen JJ, Chien YH, Lin SZ, Lin S, Tseng CP. 5-hydroxy-7-methoxyflavone inhibits N-formyl-l-methionyl-l-leucyl-l-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils. Biochem Pharmacol. 2012;84(2):182-91. doi: 10.1016/j.bcp.2012.03.015, PMID 22484311.
Suetal BN, Jung Park E, Vigo JS, Graham JG, Cabieses F, Fong HHS. Activity-guided isolation of the chemical constituents of Muntingia Calabura using a quinone reductase induction assay. Phytochemistry. 2003;63:(3):335-41. doi: 10.1016/S0031-9422(03)00112-2.
Nair J, Ghatge M, Kakkar VV, Shanker J. Network analysis of inflammatory genes and their transcriptional regulators in coronary artery disease. PLOS ONE. 2014;9(4):e94328. doi: 10.1371/journal.pone.0094328. PMID 24736319.
Wang C. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5(1). doi: 10.1038/s41392-020-00345.
Ilumets H, Rytila P, Demedts I, Brusselle GG, Sovijarvi A, Myl-larniemi M. Matrix metalloproteinases -8, -9 and -12 in smok-ers and patients with stage 0 COPD. Int J Chron Obstruct Pul-mon Dis. 2007;2(3):369-79. PMID 18229576.
Benjamin JT, Plosa EJ, Sucre JM, van der Meer R, Dave S, Gutor S. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. Journal of Clinical Investigation. 2021;131(1). doi: 10.1172/JCI139481, PMID 33108351.
Churg A, Zhou S, Wright JL. Series “matrix metalloproteinases in lung health and disease”: Matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197-209. doi: 10.1183/09031936.00121611, PMID 21920892.
Kuswandi A, Rusdin, Tarawan VM, Goenawan H, Lesmana R, Muchtaridi M. Molecular docking study of the major compounds from garcinia atroviridis on human sglt-2 protein transport using structure-based drug design method. Int J App Pharm. 2022;14(4):138-43. doi: 10.22159/ijap.2022v14i4.44390.
Published
How to Cite
Issue
Section
Copyright (c) 2023 NENDEN NURHASANAH, FADILAH FADILAH, ANTON BAHTIAR
This work is licensed under a Creative Commons Attribution 4.0 International License.