COMPUTATIONAL TOOLS ASSISTED FORMULATION OPTIMIZATION OF NEBIVOLOL HYDROCHLORIDE LOADED PLGA NANOPARTICLES BY 32 FACTORIAL DESIGNS
DOI:
https://doi.org/10.22159/ijap.2022v14i4.44865Keywords:
Nebivolol hydrochloride, In silico, Factorial design, Polymeric nanoparticleAbstract
Objective: The aim of the present study was to formulate and optimize the PLGA polymeric nanoparticle of Nebivolol Hydrochloride for sustain release of drug
Methods: The drug-excipients interaction was explored by molecular docking studies by in silico tools. The drug-loaded polymeric nanoparticles prepared by emulsion solvent evaporation method using 32 factorial design and characterized for particle size, zeta potential, and entrapment efficiency. Shape and surface morphology was analysed by SEM and TEM. In vitro drug release study was performed by using a diffusion membrane.
Results: The docking analysis inferred that the drug has interacted well with PLGA and PF-68, which could prevent the drug crystal formation. The optimized polymeric nanoparticles had a particle size of 291 nm and entrapment efficiency of 83.4% and were found to be within 95% of CI of the predicted value, which is acceptable. SEM and TEM studies showed that the formed polymeric nanoparticles were smooth, spherical in shape and uniform in size. In vitro drug release study of optimized formulation showed sustained release for prolonged time period
Conclusion: Based on the computational studies and in vitro release studies, the developed Nebivolol hydrochloride loaded in PLGA nanoparticles could be a promising formulation in oral drug delivery for the treatment of hypertension.
Downloads
References
Fabara A, Cuesta S, Pilaquinga F, Meneses L. Computational modeling of the interaction of silver nanoparticles with the lipid layer of the skin. J Nanotechnol. 2018;2018:1-9. doi: 10.1155/2018/4927017.
Mehta CH, Narayan R, Nayak UY. Computational modeling for formulation design. Drug Discov Today. 2019;24(3):781-8. doi: 10.1016/j.drudis.2018.11.018, PMID 30502513.
Priya S, Divya D, James JP, Maxwell A. Formulation and optimization of ethosomes loaded with ropinirole hydrochloride: application of quality by design approach. Res J Pharm Technol. 2020;3(9):4339-45.
Mohan raj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561-73.
Priya S, Koland M, Kumari NS. Formulation and characterization of ropinirole hydrochloride loaded solid lipid nanoparticles. Int J Pharm Pharm Sci. 2015;7(9):85-9.
Jawahar N, Eagappanath VN, Jubie S, Samantha MK. Preparation and characterisation of PLGA-nanoparticles containing an anti-hypertensive agent. Int J Pharm Tech Res. 2009;1(2):390-3.
Jana U, Mohanty AK, Manna PK, Mohanta GP. Preparation and characterization of nebivolol nanoparticles using Eudragit® RS100. Colloids Surf B Biointerfaces. 2014;113:269-75. doi: 10.1016/j.colsurfb.2013.09.001, PMID 24140793.
Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol. 2014;12(10):1605-10. doi: 10.1016/j.cgh.2014.06.018, PMID 24981782.
Bennet D, Kim S. Application of nanotechnology in drug delivery. Polym Nanoparticles Smart Drug Deliv Intech Open: Ali Demir Sezer. 2014;8:257-309.
Pal SL, Jana U, Mohanta GP, Manna PK. Antihypertensive drug loaded PLGA nanoparticles: impact of formulation variables on particle size distribution. Pharm Sin. 2013;4(1):40-6.
Veverka A, Nuzum DS, Jolly JL. Nebivolol: a third-generation beta-adrenergic blocker. Ann Pharmacother. 2006;40(7-8):1353-60. doi: 10.1345/aph.1G708, PMID 16822893.
Nemichand SK, Laxman SD. Solubility enhancement of nebivolol by micro emulsion technique. J Young Pharm. 2016;8(4):356-67. doi: 10.5530/jyp.2016.4.11.
Jose C, Priya S, Jyothi D, Joshi H, Lobo CL, SPK. Solid dispersion of nebivolol hydrochloride impregnated buccal patch: formulation and characterization. Int J App Pharm. 2021;13(3):145-9. doi: 10.22159/ijap.2021v13i3.40851.
Sharma D, Maheshwari D, Philip G, Rana R, Bhatia S, Singh M. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. BioMed Res Int. 2014;2014:156010. doi: 10.1155/2014/156010, PMID 25126544.
Bhattacharyya SP, Mazumder B. Etoricoxib-loaded solid lipid nanoparticle dosage form: formulation, optimization, characterization, stability study and in vitro in vivo evaluation. Int J Pharm Pharm Sci. 2015;7(9):51-60.
Poornima PP, Priya S. Gastroretentive floating tablets enclosing nanosponge loaded with lafutidine for gastric ulcer: formulation and evaluation. Indian J Pharm Educ Res. 2021;55(1s):s100-11. doi: 10.5530/ijper.55.1s.41.
Sreelola VU, Sailaja AK, Pharmacy M. Preparation and characterisation of ibuprofen loaded polymeric nanoparticles by solvent evaporation technique. Int J Pharm Pharm Sci. 2014;6(8):416-21.
Sarkar T, Ahmed AB. Development and in vitro characterisation of chitosan loaded paclitaxel nanoparticle. Asian J Pharm Clin Res. 2016;9(9):145-8. doi: 10.22159/ajpcr.2016.v9s3.12894.
Bhaskar RA, Patil PH. Nanocrystal suspension of cefixime trihydrate preparation by high-pressure homogenization formulation design using 23 factorial design. Int J Pharm Pharm Sci. 2017;9(9):64-71. doi: 10.22159/ijpps.2017v9i9.19319.
Ughreja R, H Parikh R. Optimization of ethyl cellulose microspheres containing satranidazole using 32 factorial design. IJPSN 2019;12(1):4371-80. doi: 10.37285/ijpsn.2019.12.1.3.
Sahin A, Esendagli G, Yerlikaya F, Caban Toktas S, Yoyen Ermis D, Horzum U. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol. 2017 Nov 17;45(8):1657-64. doi: 10.1080/21691401.2016.1276924, PMID 28084837.
Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine. 2010 Feb 1;6(1):170-8. doi: 10.1016/j.nano.2009.05.004, PMID 19447200.
Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016 Jun 1;11(3):404-16. doi: 10.1016/j.ajps.2015.09.004.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018 Jun;10(2):57. doi: 10.3390/pharmaceutics10020057, PMID 29783687.
Vijayanand P, Patil J, Reddy MV. Formulation, characterization and in vivo evaluation of novel edible dosage form containing nebivolol HCl. Braz J Pharm Sci. 2016 Jan;52(1):179-90. doi: 10.1590/S1984-82502016000100020.
Lu B, Lv X, Le Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers (Basel). 2019 Feb 12;11(2):304. doi: 10.3390/polym11020304, PMID 30960288, PMCID PMC6419218.
Kamaraj N, Rajaguru PY, Issac PK, Sundaresan S. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci. 2017 Jul 1;12(4):353-62. doi: 10.1016/j.ajps.2017.02.003, PMID 32104346.
Hines DJ, Kaplan DL. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst. 2013;30(3):257-76. doi: 10.1615/critrevtherdrugcarriersyst.2013006475, PMID 23614648, PMCID PMC3719420.
Published
How to Cite
Issue
Section
Copyright (c) 2022 GRACE SEBASTIAN, SNEH PRIYA, JAINEY P. JAMES, ABHILASH M. M., SANNIDHI, VINAY KIRAN PRABHU
This work is licensed under a Creative Commons Attribution 4.0 International License.