TRANSETHOSOMES FOR ENHANCED TRANSDERMAL DELIVERY OF METHOTREXATE AGAINST RHEUMATOID ARTHRITIS: FORMULATION, OPTIMISATION AND CHARACTERISATION
DOI:
https://doi.org/10.22159/ijap.2024v16i6.51772Keywords:
Methotrexate, Rheumatoid arthritis, Transethosomes, Box behnken design, Film-forming gelAbstract
Objective: The study aimed to develop and optimise Methotrexate (MTX)-loaded Transethosomal Film-Forming Gel (TE FFG) for transdermal delivery to treat rheumatoid arthritis while alleviating the side associated with oral administration.
Methods: The Transethosomes (TE) were prepared using the thin film hydration technique and incorporated into an FFG using chitosan. The Box-Behnken Design method was used to analyse the influence of independent variables such as the concentration of soya lecithin, surfactant, and ethanol on parameters including vesicle size, PDI (Polydispersity Index), zeta potential, and entrapment efficiency. The optimised transethosomal suspension was incorporated into the FFG using 3% chitosan and other excipients. In vitro drug release and ex vivo skin permeation of FFG were performed using Franz diffusion cells.
Results: The vesicle size, PDI, zeta potential and entrapment efficiency of the optimised formulation of TE were 110.3 nm, 0.352,-14.4 mV and 49.36%, respectively. The Transmission Electron Microscopy (TEM) image showed that the vesicles were uniform and spherical. The in vitro drug release study was higher for Conventional (CL) FFG) than TE FFG and the drug release mechanism was fitted into the Higuchi model. The permeation was higher for TE FFG, with the steady-state flux being 1.55 times greater than the CL FFG. The skin irritation test on Wistar rats revealed no indication of irritation on the skin. The histopathology examination showed a significant reduction in the inflammatory cells in the treated group.
Conclusion: Therefore, the results concluded that the formulated MTX-loaded TE FFG could be a potentially promising substitute for the oral delivery of methotrexate
Downloads
References
Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells. 2021 Oct 23;10(11):2857. doi: 10.3390/cells10112857, PMID 34831081.
Ahuja NK, Rajawat JS. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis recent insights. Int J App Pharm. 2021;13(6):31-40. doi: 10.22159/ijap.2021v13i6.42912.
Zhao Z, Hua Z, Luo X, LI Y, YU L, LI M. Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother. 2022 Jun 1;150:113074. doi: 10.1016/j.biopha.2022.113074, PMID 35658215.
Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy. 2003 May 7;49(1-2):92-104. doi: 10.1159/000069773, PMID 12714818.
Murakami T, Mori N. Involvement of multiple transporters mediated transports in mizoribine and methotrexate pharmacokinetics. Pharmaceuticals (Basel). 2012 Aug 10;5(8):802-36. doi: 10.3390/ph5080802, PMID 24280676.
Wang X, Yan H. Methotrexate loaded porous polymeric adsorbents as oral sustained release formulations. Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:598-602. doi: 10.1016/j.msec.2017.04.136, PMID 28576027.
Das S, Sharadha M, Venkatesh MP, Sahoo S, Tripathy J, Gowda DV. Formulation and evaluation of topical nanoemulgel of methotrexate for rheumatoid arthritis. Int J App Pharm. 2021;13(5):351-7. doi: 10.22159/ijap.2021v13i5.41026.
Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: General considerations. Drug Discov Today. 2013 Jan 1;18(1-2):25-34. doi: 10.1016/j.drudis.2012.08.004, PMID 22951365.
Prasad R, Koul V. Transdermal delivery of methotrexate: past present and future prospects. Ther Deliv. 2012 Mar;3(3):315-25. doi: 10.4155/tde.12.3, PMID 22833992.
Jalajakshi MN, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9, doi: 10.22159/ijpps.2022v14i10.45471.
Srinivas PS, Babu DR. Formulation and evaluation of parenteral methotrexate nanoliposomes. Int J Pharm Pharm Sci. 2014;6(11):295-300.
Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, Bondi A. Dimethyl fumarate loaded transethosomes: a formulative study and preliminary ex vivo and in vivo evaluation. Int J Mol Sci. 2022 Aug 6;23(15):8756. doi: 10.3390/ijms23158756, PMID 35955900.
Abdallah MH, Elghamry HA, Khalifa NE, Khojali WM, Khafagy ES, Shawky S. Development and optimization of erythromycin loaded transethosomes cinnamon oil based emulgel for antimicrobial efficiency. Gels. 2023 Feb 6;9(2):137. doi: 10.3390/gels9020137, PMID 36826307.
Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro ex vivo and in vivo evaluation. Int J Nanomedicine. 2019 Mar15;14:1953-68. doi: 10.2147/IJN.S196771, PMID 30936696.
Kaur PR, Garg VA, Bawa PA, Sharma RO, Singh SK, Kumar BI. Formulation systematic optimisation in vitro ex vivo and stability assessment of transethosome based gel of curcumin. Asian J Pharm Clin Res. 2018;11(2):41-7. doi: 10.22159/ajpcr.2018.v11s2.28563.
Aprianti I, Iskandarsyah SH, Setiawan H. Diflunisal transethosomes for transdermal delivery: formulation and characterisation. Int J App Pharm. 2023;15(3):61-6. doi: 10.22159/ijap.2023v15i3.47691.
Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG. Development characterization and skin delivery studies of related ultradeformable vesicles: transfersomes ethosomes and transethosomes. Int J Nanomedicine. 2015 Sep 18;10:5837-51. doi: 10.2147/IJN.S86186, PMID 26425085.
N Politis S, Colombo P, Colombo G, M Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017 Jun 3;43(6):889-901. doi: 10.1080/03639045.2017.1291672, PMID 28166428.
Vanaja K, Shobha Rani RH. Design of experiments: concept and applications of plackett burman design. Clin Res Regul Aff. 2007 Jan 1;24(1):1-23. doi: 10.1080/10601330701220520.
Decaestecker TN, Lambert WE, Van Peteghem CH, Deforce D, Van Bocxlaer JF. Optimization of solid phase extraction for a liquid chromatographic tandem mass spectrometric general unknown screening procedure by means of computational techniques. J Chromatogr A. 2004 Nov 12;1056(1-2):57-65. doi: 10.1016/j.chroma.2004.06.010, PMID 15595533.
Fukuda IM, Pinto CF, Moreira CS, Saviano AM, Lourenço FR. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz J Pharm Sci. 2018 Nov 8;54:e01006. doi: 10.1590/s2175-97902018000001006.
Zeb A, Qureshi OS, Kim HS, Cha JH, Kim HS, Kim JK. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine. 2016 Aug 8;11:3813-24. doi: 10.2147/IJN.S109565, PMID 27540293.
Nayak D, Tawale RM, Aranjani JM, Tippavajhala VK. Formulation optimization and evaluation of novel ultra deformable vesicular drug delivery system for an anti-fungal drug. AAPS Pharm Sci Tech. 2020 May 17;21(5):140. doi: 10.1208/s12249-020-01681-5.
Guimaraes D, Noro J, Loureiro A, Lager F, Renault G, Cavaco Paulo A. Increased encapsulation efficiency of methotrexate in liposomes for rheumatoid arthritis therapy. Biomedicines. 2020 Dec 1;8(12):1-15. doi: 10.3390/biomedicines8120630, PMID 33353028.
Habib BA, Sayed S, Elsayed GM. Enhanced transdermal delivery of ondansetron using nanovesicular systems: fabrication characterization optimization and ex-vivo permeation study-box-cox transformation practical example. Eur J Pharm Sci. 2018 Mar 30;115:352-61. doi: 10.1016/j.ejps.2018.01.044.
Hassan AS, Hofni A, Abourehab MA, Abdel Rahman IA. Ginger extract loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model. Int J Nanomedicine. 2023;18:1259-80. doi: 10.2147/IJN.S400604, PMID 36945254.
Rady M, Gomaa I, Afifi N, Abdel Kader M. Dermal delivery of Fe-chlorophyllin via ultra deformable nanovesicles for photodynamic therapy in melanoma animal model. Int J Pharm. 2018 Sep 5;548(1):480-90. doi: 10.1016/j.ijpharm.2018.06.057, PMID 29959090.
Khasraghi AH, Vartanian L, Thomas LM. Preparation and evaluation of lornoxicam film forming gel. Drug Invent Today. 2019 Aug 1;11(8):1906-13.
Shetty S, Jose J, Kumar L, Charyulu RN. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J Cosmet Dermatol. 2019 Jun 1;18(3):862-9. doi: 10.1111/jocd.12765, PMID 30171656.
Hegdekar NY, Priya S, Shetty SS, Jyothi D. Formulation and evaluation of niosomal gel loaded with asparagus racemosus extract for anti-inflammatory activity. Ind J Pharm Edu Res. 2023 Jan 1;57(1s):s63-74. doi: 10.5530/ijper.57.1s.8.
Avasatthi V, Pawar H, Dora CP, Bansod P, Gill MS, Suresh S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: optimization in vitro and in vivo evaluation. Pharm Dev Technol. 2016 Jul 3;21(5):554-62. doi: 10.3109/10837450.2015.1026605, PMID 26024238.
Maru AD, Lahoti SR. Formulation and evaluation of moisturising cream containing sunflower wax. Int J Pharm Pharm Sci. 2018 Nov 1;10(11):54-9. doi: 10.22159/ijpps.2018v10i11.28645.
Raychaudhuri R, Pandey A, Das S, Nannuri SH, Joseph A, George SD. Nanoparticle impregnated self-supporting protein gel for enhanced reduction in oxidative stress: a molecular dynamics insight for lactoferrin polyphenol interaction. Int J Biol Macromol. 2021 Oct 31;189:100-13. doi: 10.1016/j.ijbiomac.2021.08.089, PMID 34411613.
Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016 Dec 1;201:28-40. doi: 10.1016/j.chemphyslip.2016.10.005, PMID 27983957.
Kotian V, Koland M, Mutalik S. Nanocrystal based topical gels for improving wound healing efficacy of curcumin. Crystals. 2022 Nov 1;12(11):1565. doi: 10.3390/cryst12111565.
Parhi R, Panchamukhi T. RSM-based design and optimization of transdermal film of ondansetron HCl. J Pharm Innov. 2020 Mar 1;15(1):94-109. doi: 10.1007/s12247-019-09373-9.
Ghosh S, Mukherjee B, Chaudhuri S, Roy T, Mukherjee A, Sengupta S. Methotrexate aspasomes against rheumatoid arthritis: optimized hydrogel loaded liposomal formulation with in vivo evaluation in wistar rats. AAPS Pharm Sci Tech. 2018 Apr 1;19(3):1320-36. doi: 10.1208/s12249-017-0939-2, PMID 29340978.
Subongkot T, Duangjit S, Rojanarata T, Opanasopit P, Ngawhirunpat T. Ultradeformable liposomes with terpenes for delivery of hydrophilic compound. J Liposome Res. 2012 Sep;22(3):254-62. doi: 10.3109/08982104.2012.690158, PMID 22663352.
Zafar A, Alruwaili NK, Imam SS, Yasir M, Alsaidan OA, Alquraini A. Development and optimization of nanolipid based formulation of diclofenac sodium: in vitro characterization and preclinical evaluation. Pharmaceutics. 2022 Mar 1;14(3):507. doi: 10.3390/pharmaceutics14030507.
Zhao L, Temelli F, Curtis JM, Chen L. Preparation of liposomes using supercritical carbon dioxide technology: effects of phospholipids and sterols. Food Res Int. 2015 Nov 1;77:63-72. doi: 10.1016/j.foodres.2015.07.006.
Khalid H, Batool S, Din F. Macrophage targeting of nitazoxanide loaded transethosomal gel in cutaneous leishmaniasis. R Soc Open Sci. 2022 Oct 5;9(10). doi: 10.1098/rsos.220428.
El-Menshawe SF, Ali AA, Halawa AA, Srag El-Din AS. A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: in vitro and in vivo characterization. Drug Des Devel Ther. 2017 Nov 28;11:3377-88. doi: 10.2147/DDDT.S144652, PMID 29238164.
Published
How to Cite
Issue
Section
Copyright (c) 2024 POOJARI PRATIKSHA N., SNEH PRIYA, SANJANA, PRASANNA SHAMA KHANDIGE
This work is licensed under a Creative Commons Attribution 4.0 International License.