A REVIEW ON ADVANCES IN THE DEVELOPMENT OF SPERMICIDES LOADED VAGINAL DRUG DELIVERY SYSTEM: STATE OF THE ART
DOI:
https://doi.org/10.22159/ijap.2022v14i4.44925Keywords:
Vaginal drug delivery, Spermicides, Critical quality attributes (CQAs), High throughput productionAbstract
Spermicides are bio-actives that might immobilize/kill the sperm in the vaginal tissues inducing contraception in the female genitalia. To inhibit sperm viability, the spermicidal drug might have to inhibit the penetration of sperm through the cervical tube of the uterus as well as attack sperm present in the vaginal walls. There are several classes of spermicidal agents, such as bactericides, sulfhydryl binding agents, natural compounds, and synthetic products. There are several classes of spermicidal agents that are widely reported. Spermicides could be available in different dosage forms as foams, gels, creams, films, sponges, and nanofibers. Available pharmaceutical spermicides showed particular importance for production on a large scale due to the continuous need for contraception. The upscaling of a process can be performed using a quality by design approach to ensure the achievement of the similarity principle between lab-scale and industrial scale. In addition, risk evaluation is performed to recognize all high-risk factors that can negatively affect the product to build the design space. Furthermore, the knowledge of the critical quality attributes enables the selection of the appropriate settings on a larger scale to establish a product of good quality and good packaging.
Downloads
References
Lech MM. Spermicides: an overview. Eur J Contracept Reprod Health Care. 2002;7(3):173-7. doi: 10.1080/ejc.7.3.173.177, PMID 12428938.
Gupta S, Prabha V. Intravaginal delivery approaches for contraception: an overview with emphasis on gels. J Pharm Pharm Sci. 2017;20:270-84. doi: 10.18433/J3FM06, PMID 28810947.
Vignini A, Buldreghini E, Nanetti L, Amoroso S, Boscaro M, Ricciardo Lamonica G. Free thiols in human spermatozoa: are Na+/K+-ATPase, Ca2+-ATPase activities involved in sperm motility through peroxynitrite formation? Reprod Biomed Online. 2009;18(1):132-40. doi: 10.1016/s1472-6483(10)60435-x, PMID 19146780.
D’cruz OJ, Uckun FM. Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception. 2001;64(2):113-23. doi: 10.1016/s0010-7824(01)00233-5, PMID 11704088.
Nelson AL. An overview of properties of amphora (acid form) contraceptive vaginal gel. Expert Opin Drug Saf. 2018;17(9):935-43. doi: 10.1080/14740338.2018.1515197, PMID 30136907.
Moudgil P, Gupta A, Sharma A, Gupta S, Tiwary AK. Spermicidal efficacy of some membrane stabilizers. Pharmacology Reviews and Communications. 2002;12(4):241-8. doi: 10.1080/10604450214704.
Jain A, Lal N, Kumar L, Verma V, Kumar R, Kumar L. Novel trichomonacidal spermicides. Antimicrob Agents Chemother. 2011;55(9):4343-51. doi: 10.1128/AAC.00199-11, PMID 21709091.
Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829-43. doi: 10.1016/s0015-0282(02)04948-8, PMID 12749418.
Naz RK, Lough ML, Barthelmess EK. Curcumin: a novel non-steroidal contraceptive with antimicrobial properties. Front Biosci (Elite Ed). 2016;8(1):113-28. doi: 10.2741/E755, PMID 26709650.
Ogbuewu IP, Unamba Oparah IC, Odoemenam VU, Etuk IF, Okoli IC. The potentiality of medicinal plants as the source of new contraceptive principles in males. N Am J Med Sci. 2011;3(6):255-63. doi: 10.4297/najms.2011.3250, PMID 22540095.
Sutyak KE, Anderson RA, Dover SE, Feathergill KA, Aroutcheva AA, Faro S. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol. 2008;2008:540758. doi: 10.1155/2008/540758, PMID 18923673.
Aranha C, Gupta S, Reddy KVR. Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. Contraception. 2004;69(4):333-38. doi: 10.1016/j.contraception.2003.11.002, PMID 15033410.
Gupta S, Kaur IP, Prabha V. Evaluation of the antifertility effect of gel formulation containing sperm immobilizing factor: in vitro and in vivo studies. Eur J Pharm Sci. 2016;81:67-74. doi: 10.1016/j.ejps.2015.10.004, PMID 26455286.
Kaur S, Prabha V, Sarwal A. Receptor-mediated agglutination of human spermatozoa by sperm agglutinating factor isolated from staphylococcus aureus. J Urol. 2010;184(6):2586-90. doi: 10.1016/j.juro.2010.07.031, PMID 21030040.
Maikhuri JP, Dwivedi AK, Dhar JD, Setty BS, Gupta G. Mechanism of action of some acetophenones, quinolines and dithiocarbamate as potent, non-detergent spermicidal agents. Contraception. 2003;67(5):403-8. doi: 10.1016/s0010-7824(03)00022-2, PMID 12742565.
Suthutvoravut S, Kamyarat O. Spermicidal effects of lemon juice and juices from other natural products. Agric Nat Resour. 2016;50(2):133-8. doi: 10.1016/j.anres.2015.09.004.
Saha P, Majumdar S, Pal D, Pal BC, Kabir SN. Evaluation of the spermicidal activity of MI-saponin. Reprod Sci. 2010;17(5):454-64. doi: 10.1177/1933719110361378, PMID 20220105.
Zhou B, Qiu Z, Liu G, Liu C, Zhang J. Spermicidal and antigonococcal effects of tannins from pomegranate rind. J Med Plants Res. 2012;6(7):1334-9.
D’Cruz OJ, Dong Y, Uckun FM. Potent dual anti-HIV and spermicidal activities of novel oxovanadium(V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochem Biophys Res Commun. 2003;302(2):253-64. doi: 10.1016/s0006-291x(03)00161-x, PMID 12604339.
D’Cruz OJ, Ghosh P, Uckun FM. Spermicidal activity of metallocene complexes containing vanadium(IV) in humans. Biol Reprod. 1998;58(6):1515-26. doi: 10.1095/biolreprod58.6.1515, PMID 9623614.
Less GB, Ockwig NW, Rasmussen PG, Smith GD, Keller LM, Drach JC. Vanadium complex of 2-(2′-pyridyl)-4,5-dicyanoimidazole showing spermicidal and cytotoxic properties. Inorg Chem. 2006;45(18):7105-10. doi: 10.1021/ic060545f, PMID 16933910.
Grimes DA, Lopez LM, Raymond EG, Halpern V, Nanda K, Schulz KF. Spermicide used alone for contraception. Cochrane Database Syst Rev. 2013;5(12):CD005218.
Garg S, Goldman D, Krumme M, Rohan LC, Smoot S, Friend DR. Advances in development, scale-up and manufacturing of microbicide gels, films, and tablets. Antiviral Res. 2010;88Suppl 1:S19-29. doi: 10.1016/j.antiviral.2010.09.010, PMID 21109064.
Digenis GA, Nosek D, Mohammadi F, Darwazeh NB, Anwar HS, Zavos PM. Novel vaginal controlled-delivery systems incorporating coprecipitates of nonoxynol-9. Pharm Dev Technol. 1999;4(3):421-30. doi: 10.1081/pdt-100101378, PMID 10434288.
Lee CH, Chien YW. Development and evaluation of a mucoadhesive drug delivery system for dual-controlled delivery of nonoxynol-9. J Control Release. 1996;39(1):93-103. doi: 10.1016/0168-3659(95)00142-5.
Malcolm K, Woolfson D, Russell J, Andrews C. In vitro release of nonoxynol-9 from silicone matrix intravaginal rings. J Control Release. 2003;91(3):355-64. doi: 10.1016/s0168-3659(03)00260-8, PMID 12932713.
Daoud WM, Rajab MA, Rajab NA. Preparation, in vitro characterization, and clinical study of propranolol HCl vaginal contraceptive hollow-type suppositories. World J Pharm Res. 2017;6(13):86-99.
Borumand M, Mortazavi SA, Jafari Azar ZJ, Teymouri Rad R. Development and in vitro evaluation of a novel contraceptive vaginal mucoadhesive propranolol hydrochloride film. J Drug Deliv Sci Technol. 2014;24(6):637-44. doi: 10.1016/S1773-2247(14)50130-X.
Tasdighi E, Jafari Azar ZJ, Mortazavi SA. Development and in vitro evaluation of a contraceptive vagino-adhesive propranolol hydrochloride gel. Iran J Pharm Res. 2012;11(1):13-26. PMID 25317181.
Van Heugten AJP, Vromans H. Scale-up of semisolid dosage forms manufacturing based on process understanding: from lab to industrial scale. AAPS PharmSciTech. 2018;19(5):2330-4. doi: 10.1208/s12249-018-1063-7, PMID 29845500.
Ahmad S, Khabiya P, Au T, Raheman Bakhshi AR. Quality by design approach to develop stability-indicating reversed-phase high-performance liquid chromatography method development for ambroxol. Asian J Pharm Clin Res. 2021;14(12):44-9. doi: 10.22159/ajpcr.2021.v14i12.42939.
Rajora A, Chhabra G. Quality by design approach: regulatory need, current, and future perspective. Asian J Pharm Clin Res. 2021;14(6):29-35. doi: 10.22159/ajpcr.2021.v14i6.33733.
Charoo NA, Rahman Z. Integrating QbD tools for flexible scale-up batch size selection for solid dosage forms. J Pharm Sci. 2020;109(3):1223-30. doi: 10.1016/j.xphs.2019.12.007, PMID 31857095.
Dhobale AV, Mahale AM, Shirsat M, Pethkar S, Chakote V. Recent advances in pilot plant scale-up techniques-a review. Indo Am J Pharm Res. 2018;8(4):1060-68.
Das SN, Besan M. Pilot plant scale-up techniques of solid dosage form (tablet): an overview. J Pharm Adv Res. 2020;3(7):918-25.
Das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1-2):1-14. doi: 10.1016/j.ijpharm.2006.03.012, PMID 16621366.
Raval N, Tambe V, Maheshwari R, Deb PK, Tekade RK. Scale-up studies in pharmaceutical products development. In: Tekade RK, editor. Dosage form design considerations. MA: Academic Press; 2018. p. 669-700.
Fernandez Campos F, Obach M, Moreno MC, Garcia A, Gonzalez J. Pharmaceutical development of a generic corticoid semisolid formulation. J Drug Deliv Sci Technol. 2017;42:227-36. doi: 10.1016/j.jddst.2017.03.016.
Kumar A, Vercruysse J, Toiviainen M, Panouillot PE, Juuti M, Vanhoorne V. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging. Eur J Pharm Biopharm. 2014;87(2):279-89. doi: 10.1016/j.ejpb.2014.04.004, PMID 24768925.
Ramanauskiene K, Zilius M, Kancauskas M, Juskaite V, Cizinauskas V, Inkeniene A. Modeling and biopharmaceutical evaluation of semisolid systems with rosemary extract. Acta Pol Pharm. 2016;73(1):153-61. PMID 27008810.
Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI. End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed Engl. 2013;52(47):12359-63. doi: 10.1002/anie.201305429, PMID 24115355.
Tran M, Wang C. Semi-solid materials for controlled release drug formulation: current status and future prospects. Front Chem Sci Eng. 2014;8(2):225-32. doi: 10.1007/s11705-014-1429-7.
Nasa P. A review on pharmaceutical packaging material. World J Pharm Res. 2014;3(5):344-68.
Dobaria NB, Badhan AC, Mashru RC. A novel itraconazole bioadhesive film for vaginal delivery: design, optimization, and physicodynamic characterization. AAPS PharmSciTech. 2009;10(3):951-9. doi: 10.1208/s12249-009-9288-0, PMID 19629707.
Dobaria N, Mashru R. Design and in vitro evaluation of a novel bioadhesive vaginal drug delivery system for clindamycin phosphate. Pharm Dev Technol. 2010;15(4):405-14. doi: 10.3109/10837450903262058, PMID 19842917.
Ham AS, Rohan LC, Boczar A, Yang L, W Buckheit KW, Buckheit RW. Vaginal film drug delivery of the pyrimidinedione IQP-0528 for the prevention of HIV infection. Pharm Res. 2012;29(7):1897-907. doi: 10.1007/s11095-012-0715-7, PMID 22392331.
Nagaraju T, Gowthami R, Rajashekar M, Sandeep S, Mallesham M, Sathish D. Comprehensive review on oral disintegrating films. Curr Drug Deliv. 2013;10(1):96-108. doi: 10.2174/1567201811310010016, PMID 22920576.
Preis M, Woertz C, Kleinebudde P, Breitkreutz J. Oromucosal film preparations: classification and characterization methods. Expert Opin Drug Deliv. 2013;10(9):1303-17. doi: 10.1517/17425247.2013.804058, PMID 23768198.
Cao N, Yang X, Fu Y. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll. 2009;23(3):729-35. doi: 10.1016/j.foodhyd.2008.07.017.
Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: current status and future perspectives: I– Galenical development and quality attributes. J Control Release. 2015;206:1-19. doi: 10.1016/j.jconrel.2015.03.006, PMID 25747406.
El-Gindy GA, El-Sayed AM, Mohame SA, Abdel-Aal GM. Mucoadhesive vaginal tablets of natamycin for vaginal candidiasis. Bull Pharm Sci Assiut. 2003;26(1):29-40. doi: 10.21608/bfsa.2003.65465.
Yamamoto K, Shao ZJ. Process development, optimization, and scale-up: fluid-bed granulation. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, editors. Developing solid oral dosage forms: pharmaceutical theory and practice. 2nd ed. MA: Academic Press; 2017. p. 777-92.
Natoli D, Levin M, Tsygan L, Liu L. Development, optimization, and scale-up of process parameters: tablet compression. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, editors. Developing solid oral dosage forms: pharmaceutical theory and practice. 2nd ed. MA: Academic Press; 2017. p. 917-51.
Mitra B, Hilden J, Litster JD. Compaction mechanics of plastically deformable dry granules. Powder Technol. 2016;291:328-36. doi: 10.1016/j.powtec.2015.12.022.
Priyanka P, Sri Rekha MS, Devi AS. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci. 2022;14(1):1-8. doi: 10.22159/ijpps.2022v14i1.42595.
Friend DR. Intravaginal rings controlled release systems for contraception and prevention of transmission of sexually transmitted infections. Drug Deliv Transl Res. 2011;1(3):185-93. doi: 10.1007/s13346-011-0024-4, PMID 25788239.
Huang C, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962-9. doi: 10.1016/j.biomaterials.2011.10.004, PMID 22018388.
Krogstad EA, Woodrow KA. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery. Int J Pharm. 2014;475(1-2):282-91. doi: 10.1016/j.ijpharm.2014.08.039, PMID 25169075.
Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics (Basel). 2020;9(9):553. doi: 10.3390/antibiotics9090553, PMID 32872235.
Whaley KJ, Hanes J, Shattock R, Cone RA, Friend DR. Novel approaches to vaginal delivery and safety of microbicides: biopharmaceuticals, nanoparticles, and vaccines. Antiviral Res. 2010;88Suppl 1:S55-66. doi: 10.1016/j.antiviral.2010.09.006, PMID 21109069.
MS, Panda SP, Buddha S, Kumari PVK, Rao YS. Proniosomes: a vesicular drug delivery system. Int J Curr Pharm Res. 2021;13(6):32-6.
Published
How to Cite
Issue
Section
Copyright (c) 2022 MENNA M. ABDELLATIF, MOAZ A. ELTABEEB, MOHAMED A. EL-NABARAWI, MAHMOUD H. TEAIMA
This work is licensed under a Creative Commons Attribution 4.0 International License.