FOCUS ON NIOSOMAL–BASED DRUG DELIVERY SYSTEMS FOR NASAL ROUTE: APPLICATIONS AND CHALLENGES
DOI:
https://doi.org/10.22159/ijap.2023v15i1.46280Keywords:
Nasal delivery, Niosomal-based delivery systems, Methods of preparations, Nose-to-brain delivery, Systemic deliveryAbstract
For decades, the nasal route of administration is principally used for many therapeutic applications owing to the non-invasive nature of the nasal pathway. Besides, it circumvents blood-brain-barrier (BBB) and hepatic first-pass effect. Consequently, the nasal route is much preferred over other invasive approaches like intravenous, intracerebral, and transcranial for the systemic delivery of drugs and the treatment of central nervous systems (CNS) disorders such as depression, Alzheimer’s disease (AD), multiple sclerosis, and Parkinson’s disease (PD) via the nose-to-brain pathway. Drug applied via the nasal route displays some difficulty to reach the brain, like the dose limitation of the nasal pathway, mucociliary clearance, etc. The efficiency of the nasal route depends on the application delivery system. Lipidic-based drug delivery systems (liposomes, solid lipid nanoparticles …etc.) have been confirmed for their promising impact on the nasal delivery approach. Furthermore, the sensitivity of the nasal route and the touched-complications of clinical trials in CNS disorders assigns the necessity of consideration to the clinical trials and approval process of the niosomal-based nasal drug delivery approach. This review describes different approaches to nasal delivery, lipidic-based delivery systems with a focus on niosomes as a promising nasal delivery system, along with different formulation methodologies, and applications.
Downloads
References
Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994. doi: 10.1016/j.ijpharm.2021.120994, PMID 34390810.
Akel H, Ismail R, Csoka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur J Pharm Biopharm. 2020 Mar;148:38-53. doi: 10.1016/j.ejpb.2019.12.014, PMID 31926222.
Moinuddin S, Razvi SMH, Uddin MS, Fazil M, Shahidulla S, Akmal MM. Nasal drug delivery system: a innovative approach. J Pharm Innov. 2019;8(3):169-77.
Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release. 2019;295:187-200. doi: 10.1016/j.jconrel.2018.12.049, PMID 30610952.
Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019 Oct 17;11(10):540. doi: 10.3390/pharmaceutics11100540, PMID 31627301.
Barnabas W. Drug targeting strategies into the brain for treating neurological diseases. J Neurosci Methods. 2019;311:133-46. doi: 10.1016/j.jneumeth.2018.10.015, PMID 30336221.
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019 Jan 1;99(1):21-78. doi: 10.1152/physrev.00050.2017, PMID 30280653.
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018 Aug 3;10(3):116. doi: 10.3390/pharmaceutics10030116, PMID 30081536.
Salatin S, Barar J, Barzegar Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res. 2016 Sep 28;39(9):1181-92. doi: 10.1007/s12272-016-0782-0, PMID 27352214.
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm. 2017;530(1-2):128-38. doi: 10.1016/j.ijpharm. 2017.07.012, PMID 28698066.
Lobaina Mato YY. Nasal route for vaccine and drug delivery: features and current opportunities. Int J Pharm. 2019 Dec;572:118813. doi: 10.1016/j.ijpharm.2019.118813, PMID 31678521.
Vani GN, Alagusundaram M, Chandrasekar KB. Formulation and optimization and in vitro characterization of olanzapine liposome. Int J App Pharm. 2021 Sep 7;13(5):109-14. doi: 10.22159/ijap.2021v13i5.42085.
Charumathy A, Ubaidulla U, Sinha P, Rathnam G. Recent update on liposome-based drug delivery system. Int J Curr Pharm Sci. 2022;14(3):22-7. doi: 10.22159/ijcpr.2022v14i3.1991.
Jaiswal PK, Keserwani S, Chakrabarty T. Lipid-polymer hybrid nanocarriers as a novel drug delivery platform. Int J Pharm Pharm Sci. 2022 Apr 1;14(4):1-12. doi: 10.22159/ ijpps.2022v14i4.44038.
Upadhyay P, Trivedi J, Pundarikakshudu K, Sheth N. Comparative study between simple and optimized liposomal dispersion of quetiapine fumarate for diffusion through nasal route. Drug Deliv. 2016;23(4):1214-21. doi: 10.3109/10717544.2015.1120364, PMID 26643946.
Zhao YZ, Lin M, Lin Q, Yang W, Yu XC, Tian FR. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release. 2016 Feb;224:165-75. doi: 10.1016/j.jconrel.2016.01.017, PMID 26774220.
Tada R, Hidaka A, Iwase N, Takahashi S, Yamakita Y, Iwata T. Intranasal immunization with DOTAP cationic liposomes combined with DC-cholesterol induces potent antigen-specific mucosal and systemic immune responses in Mice. PLOS ONE. 2015 Oct 6;10(10):e0139785. doi: 10.1371/journal.pone.0139785, PMID 26440657.
Sharma A, Harikumar SL. Quality by design approach for development and optimization of nitrendipine loaded niosomal gel for accentuated transdermal delivery. Int J App Pharm. 2020;12(5):181-9. doi: 10.22159/ijap.2020v12i5.38639.
Masjedi M, Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol. 2021 Feb;61:102234. doi: 10.1016/j.jddst.2020.102234.
Jadhav A, Varghese Cheriyan B. Formulation and optimization of nifedipine loaded nanocarriers. Int J App Pharm. 2021 Sep 7;13(5):311-7. doi: 10.22159/ijap.2021v13i5.42050.
Abtahi NA, Naghib SM, Ghalekohneh SJ, Mohammadpour Z, Nazari H, Mosavi SM. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: in vitro and in vivo studies. Chem Eng J. 2022 Feb;429:132090. doi: 10.1016/j.cej.2021.132090.
Haroun M, Elsewedy HS, Shehata TM, Tratrat C, Al Dhubiab BE, Venugopala KN. Significant of injectable brucine pegylated niosomes in treatment of MDA cancer cells. J Drug Deliv Sci Technol. 2022 May;71(Apr):103322. doi: 10.1016/j.jddst.2022.103322.
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K. The anticancer potential of the dietary polyphenol rutin: current status, challenges, and perspectives. Crit Rev Food Sci Nutr. 2022;62(3):832-59. doi: 10.1080/10408398.2020.1829541, PMID 33054344.
Gugleva V, Michailova V, Mihaylova R, Momekov G, Zaharieva MM, Najdenski H. Formulation and evaluation of hybrid niosomal in situ gel for intravesical co-delivery of curcumin and gentamicin sulfate. Pharmaceutics. 2022 Mar 30;14(4):747. doi: 10.3390/pharmaceutics14040747, PMID 35456581.
Dadashpour M, Rasooli I, Sefidkon F, Rezaei MB, Danish Alipour Astaneh S. Lipid peroxidation inhibition, superoxide anion and nitric oxide radical scavenging properties of Thymus daenensis and Anethum graveolens essential oils. J Med Plants. 2011;10(37):109-20.
Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, Gholizadeh O, Yekanipour Z, Afkhami H. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm. 2022;624:121878. doi: 10.1016/j.ijpharm.2022.121878, PMID 35636629.
Dharashivkar S, Sahasrabuddhe S, Saoji A. Silver sulfadiazine niosomes: a novel sustained release once a day formulation for burn treatment. Int J Pharm Pharm Sci. 2014;6(1):1-6.
Poustforoosh A, Nematollahi MH, Hashemipour H, Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the blood-brain Barrier in (pre-) clinical studies with an emphasis on vesicles. J Control Release. 2022 Mar;343:777-97. doi: 10.1016/j.jconrel.2022.02.015, PMID 35183653.
Aparajay P, Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci. 2022 Jan;168:106052. doi: 10.1016/j.ejps.2021.106052, PMID 34740786.
S ST. MM. Development of rivastigmine loaded self assembled nanostructures of nonionic surfactants for brain delivery. Int J Appl Pharm. 2021 Sep 7;13(5):205-15.
Kaoud RM, Heikal EJ, Hammady TM. Diacerein-loaded niosomes (DC-NS): A new technique to sustain the release of drug action. Int J App Pharm. 2022 Jan 7;14(1):156-63. doi: 10.22159/ijap.2022v14i1.43353.
Negi P, Aggarwal M, Sharma G, Rathore C, Sharma G, Singh B. Niosome-based hydrogel of resveratrol for topical applications: an effective therapy for pain related disorder(s). Biomed Pharmacother. 2017 Apr;88:480-7. doi: 10.1016/j.biopha.2017.01.083, PMID 28126673.
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014 Jul;185(1):22-36. doi: 10.1016/j.jconrel.2014.04.015, PMID 24747765.
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1-13. doi: 10.1155/2016/7372306.
Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014 Mar;205:187-206. doi: 10.1016/j.cis.2013.11.018, PMID 24369107.
Sita VG, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol. 2020 Aug;58(Mar):101791. doi: 10.1016/j.jddst.2020.101791.
Xu Y, Hanna MA. Electrospray encapsulation of water-soluble protein with polylactide. Effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm. 2006 Aug 31;320(1-2):30-6. doi: 10.1016/j.ijpharm.2006.03.046, PMID 16697538.
Gayathri Devi S, Venkatesh UN. Niosomal sumatriptan succinate for nasal administration. Indian J Pharm Sci. 2000;62(6):479-81.
Priprem A. Intranasal delivery of nanosized melatonin-encapsulated niosomes in rats. J Nanomedical Nanotechnol. 2012;01(S1). doi: 10.4172/scientificreports.232.
Ravouru N, Kondreddy P, Korakanchi D, Haritha M. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Discov Technol. 2013 Oct 1;10(4):270-82. doi: 10.2174/15701638113109990031, PMID 23863098.
Ammar HO, Haider M, Ibrahim M, El Hoffy NM. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017 Jan 1;24(1):414-21. doi: 10.1080/10717544.2016.1259371, PMID 28165822.
Abou Taleb HA, Khallaf RA, Abdel-Aleem JA. Intranasal niosomes of nefopam with improved bioavailability: preparation, optimization, and in vivo evaluation. Drug Des Devel Ther. 2018;12:3501-16. doi: 10.2147/DDDT.S177746, PMID 30410310.
Mathure D, Madan JR, Gujar KN, Tupsamundre A, Ranpise HA, Dua K. Formulation and evaluation of niosomal in situ nasal gel of a serotonin receptor agonist, buspirone hydrochloride for the brain delivery via intranasal route. Pharm Nanotechnol. 2018 Apr 13;6(1):69-78. doi: 10.2174/2211738506666180130105919, PMID 29380709.
Rinaldi F, Hanieh PN, Chan LKN, Angeloni L, Passeri D, Rossi M. Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics. 2018 Mar 22;10(2):38. doi: 10.3390/pharmaceutics10020038, PMID 29565809.
Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res. 2020 Apr 2;30(2):163-73. doi: 10.1080/08982104.2019.1610435, PMID 31039651.
Fahmy UA, Badr-Eldin SM, Ahmed OAA, Aldawsari HM, Tima S, Asfour HZ. Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: in vitro optimization and ex vivo/in vivo evaluation. Pharmaceutics. 2020 May 27;12(6):485. doi: 10.3390/pharmaceutics12060485, PMID 32471119.
Jain H, Prabhakar B, Shende P. Modulation of olfactory area for effective transportation of actives in CNS disorders. J Drug Deliv Sci Technol. 2022;68:103091. doi: 10.1016/j.jddst.2021.103091.
Bahadur S, Naurange T, Baghel P, Sahu M, Yadu K. Targeting the brain: various approaches and science involved. ScienceRise: Pharmaceutical Science. 2020;27(5 (27)):4-16. doi: 10.15587/2519-4852.2020.210824.
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019 Jan 29;11(2):55. doi: 10.3390/pharmaceutics11020055, PMID 30700021.
Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014 Mar 24;21(2):87-100. doi: 10.3109/10717544.2013.838077, PMID 24156390.
Sezgin Bayindir Z, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech. 2015 Feb 10;16(1):108-17. doi: 10.1208/s12249-014-0213-9, PMID 25204859.
Garcia Manrique P, Machado ND, Fernandez MA, Blanco Lopez MC, Matos M, Gutierrez G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf B Biointerfaces. 2020 Feb 1;186:110711. doi: 10.1016/j.colsurfb.2019.110711, PMID 31864114.
Kamal M, Maher M, Ibrahim A, Louis D. An overview on niosomes: A drug nanocarrier. Drug Intellect Prop Int J. 2018 Jul 11;1(5):1-9.
Published
How to Cite
Issue
Section
Copyright (c) 2023 SAEED A S AL-ZUHAIRY, Hossam S.El-Sawy, MOHAMED A EL‑NABARAWI, MAHMOUD H TEAIMA
This work is licensed under a Creative Commons Attribution 4.0 International License.