FORMULATION AND STABILITY STUDY OF BLACK CUMIN (NIGELLA SATIVA L.) SEED OIL EMULSION USING SUCROSE PALMITATE AS EMULSIFIER
DOI:
https://doi.org/10.22159/ijap.2022v14i5.44945Keywords:
Emulsion, Thymoquinone, Sucrose palmitate, Hedonic test, StabilityAbstract
Objective: An emulsion of black cumin seed oil was developed using an orally safe surfactant, sucrose palmitate, to make it more comfortable to consume.
Methods: The emulsion was made using a 3% concentration of sucrose palmitate to emulsify 5% (F1) and 7.5% (F2) black cumin seed oil to the developed stable emulsion. The hedonic test was applied to 30 panelists, showing the accepted formulation.
Results: The pH value of each formulation degraded during 12 w of storage. The formula of 5% oil (F1) has better physical stability, and its bioactive component, Thymoquinone, showed a slight degradation on the first day. But it showed a rapid degradation after 60 d of storage due to its instability in a solution. The F1 formula (mean = 3.1667) is more preferred than the F2 formula (mean = 3) of the 1-5 hedonic scale, with the significance score (p) valued less than 0.05 and considered to be significantly different from its original form.
Conclusion: The emulsion of black cumin oil can be developed and more comfortable to consume.
Downloads
References
Yimer EM, Tuem KB, Karim A, Ur-rehman N, Anwar F. Nigella sativa L. (Black Cumin): A promising natural remedy for wide range of illnesses. Evid Based Complement Alternat Med. 2019;2019:1528635. doi: 10.1155/2019/1528635, PMID 31214267.
Parasuraman S. Herbal drug discovery: challenges and perspectives. Curr Pharm and Personalized Med. 2018;16(1):63-8. doi: 10.2174/187569211666618041915333.
Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337-52. doi: 10.1016/S2221-1691(13)60075-1. PMID 23646296.
Darakhshan S, Bidmeshki A, Hosseinzadeh A. Thymoquinone and its therapeutic potentials. Pharm Res. 2015;95:138-58. doi: 10.1016/j.phrs.2015.03.011.
Ziaee T, Moharreri N, Hosseinzadeh H. Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. J Med Plants. 2012;11(42):16-42.
Haseena S, Aithal M, Das KK, Saheb SH. Phytochemical analysis of Nigella sativa and its effect on the reproductive system. J Pharm Sci Res. 2015;7(8):514-7.
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des Dev Ther. 2021;15:1819-33. doi: 10.2147/DDDT.S308863. PMID 33976534.
Karaman K. Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: stability of thymoquinone and bioactive properties. Food Chem. 2020 May 30;313:126-9. doi: 10.1016/ j.foodchem.2019.126129. PMID 31935665.
Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on clinical trials of black seed (Nigella sativa) and its active constituent, thymoquinone. J Pharmacopuncture. 2017;20(3):179-93. doi: 10.3831/KPI.2017.20.021, PMID 30087794.
Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci. 2014 Dec;17(12):929-38. PMID 25859296.
Sinko PJ. Martin’s physical pharmacy and pharmaceutical sciences. 6th ed; 2011.
Kawamura Y, Meyland I. Sucrose monoesters of lauric, palmitic, or stearic acid chemical and technical assessment prepared by Yoko Kawamura, PhD, and reviewed by Mrs Inge Meyland. 2011;1:1-11.
National Center for Biotechnology Information. PubChem compound summary for CID 10281. Available from: https://pubchem.thymoquinone.ncbi.nlm.nih.gov/compound/thymoquinone. [Last accessed on 13 Oct 2020]
Mitsubishi Chemical Corporation, Ester RS. Available from https://www.mchemical.co.jp/en/products/departments/group/mfc/product/1201443_7739.html. [Last accessed on 16 Oct 2020].
Agbaria R, Gabarin A, Dahan A, Ben-Shabat S. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Des Dev Ther. 2015 Jun 18;9:3119-24. doi: 10.2147/DDDT.S82938. PMID 26124636, PMCID PMC4476428.
Salmani JM, Asghar S, Lv H, Zhou J. Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light. Molecules. 2014 May 8;19(5):5925-39. doi: 10.3390/molecules19055925, PMID 24815311, PMCID PMC6270770.
Jufri M, Natalia M. Physical stability and antibacterial activity of black cumin oil (Nigella sativa L.) nanoemulsion gel. Int J Pharm Tech Res. 2014;6(4):1162-9.
Lachman L, Lieberman HA. The theory and practice of industrial pharmacy lea and febiger. Philadelphia; 1986. p. PA19106.
Alquadeib BT. Development and validation of a new HPLC analytical method for the determination of diclofenac in tablets. Saudi Pharm J. 2019;27(1):66-70. doi: 10.1016/j.jsps.2018.07.020, PMID 30662308.
Hasan AH Y, Simple AL I. HPLC method for the determination of thymoquinone in black seed oil (Nigella sativa Linn). J Liq Chromatogr. 2006;18(5):895902.
Wilde PJ. Improving emulsion stability through the selection of emulsifiers and stabilizers. In: Reference module in food science. Elsevier; 2019. p. 1-9. doi: 10.1016/B978-0-08-100596-5.22337-8.
Yong AP, Islam MA, Hasan N. The effect of pH and high-pressure homogenization on droplet size. Int J Eng Mater Manuf. 2017;2(4):110-22. doi: 10.26776/ijemm.02.04.2017.05.
Kralova I, Sjoblom J. Surfactants used in food industry: a review. Journal of Dispersion Science and Technology. 2009;30(9):1363-83. doi: 10.1080/01932690902735561.
Neta NS, Teixeira JA, Rodrigues LR. Sugar ester surfactants: enzymatic synthesis and applications in food industry. Crit Rev Food Sci Nutr. 2015;55(5):595-610. doi: 10.1080/10408398.2012.667461, PMID 24915370.
Rao J, McClements DJ. Optimization of lipid nanoparticle formation for beverage applications: influence of oil type, cosolvents, and cosurfactants on nanoemulsion properties. J Food Eng. 2013;118(2):198-204. doi: 10.1016/j.jfoodeng.2013.04.010.
Kabalnov A. Ostwald ripening and related phenomena. Journal of Dispersion Science and Technology. 2001;22(1):1-12. doi: 10.1081/DIS-100102675.
Vingerhoeds MH, de Wijk RA, Zoet FD, Nixdorf RR, van Aken GA. How emulsion composition and structure affect sensory perception of low-viscosity model emulsions. Food Hydrocoll. 2008;22(4):631-46. doi: 10.1016/j.foodhyd.2007.02.011.
Bogdanov S. Honey in medicine. Book Honey; Chapter 9; 2016.
Maszewska M, Florowska A, Dłużewska E, Wroniak M, Marciniak Lukasiak K, Żbikowska A. Oxidative stability of selected edible oils. Molecules. 2018;23(7):15-7. doi: 10.3390/molecules23071746, PMID 30018226.
Chemistry Libre Texts. Temperature dependence of the pH of pure Water; 2021.
Okumura H, Kitazawa N, Wada S, Hotta H. Stability of sucrose fatty acid esters under acidic and basic conditions. J Oleo Sci. 2011;60(6):313-20. doi: 10.5650/jos.60.313, PMID 21606619.
Published
How to Cite
Issue
Section
Copyright (c) 2022 MAHDI JUFRI, JIHAN NAMIRAH; HERMAN SURYADI
This work is licensed under a Creative Commons Attribution 4.0 International License.