Inhibitors, SARS-CoV-2, COVID-19, SARS-CoV-2 3CL-protease, Papain-like protease.


The SARS-CoV-2 virus causes coronavirus, and the pandemic has led to efforts to develop appropriate drugs for treatment. Understanding the structure and function of SARS-CoV-2 3CL is crucial in unlocking ways of developing effective drugs. Some studies have described the structure of the protease at the DNA and protein levels. Notably, two important proteases help in the drug development process: PLpro and 3CLpro. The 3CLpro, for instance, is helpful in viral replication alongside transcription. The PL is associated with NsP3, a multi-domain protein part of the viral replication and transcription complex which cleaves peptide bonds at specific sites. In vitro studies have shown that SARS-CoV-2 3CL-protease inhibitors can contribute to antiviral drug development, especially MG-132, boceprevir, telaprevir, and calpain, which are protein inhibitors with lethal dose values appropriate for drug development. In contrast, there are very limited studies in vivo reporting the appropriateness of protease inhibitors in antiviral drug development.


Download data is not yet available.


Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M. Identification of inhibitors of SARS-CoV-2 3CL-pro enzymatic activity using a small molecule in vitro repurposing screen. ACS Pharmacol Transl Sci. 2021 Mar;4(3):1096-110. doi: 10.1021/acsptsci.0c00216, PMID 35287429.

Cui W, Yang K, Yang H. Recent progress in the drug development targeting SARS-CoV-2 main protease as a treatment for COVID-19. Front Mol Biosci. 2020 Dec;7:616341. doi: 10.3389/fmolb.2020.616341, PMID 33344509.

Cherumanalil JM, Thayyil J. Pharmacological treatments of Covid-19– a review. Asian J Pharm Clin Res. 2020 Oct;13(10):16-22. doi: 10.22159/ajpcr.2020.v13i10.39055.

Mandeep S, Dhruv D. A recent review on: coronavirus disease 2019. Asian J Pharm Clin Res. 2022 Jul;15(7):17-24.

Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Potency, safety, and pharmacokinetic profiles of potential inhibitors targeting SARS-CoV-2 main protease. Front Pharmacol. 2020;11:630500. doi: 10.3389/fphar.2020.630500, PMID 33597888.

Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem. 2012 Oct;20(19):5928-35. doi: 10.1016/j.bmc.2012.07.038, PMID 22884354.

Osipiuk J, Azizi SA, Dvorkin S, Endres M, Jedrzejczak R, Jones KA. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun. 2021 Feb;12(1):743. doi: 10.1038/s41467-021-21060-3, PMID 33531496.

Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H. Drug targets for coronavirus: A systematic review. Indian J Pharmacol. 2020 Jan;52(1):56-65. doi: 10.4103/ijp.IJP_115_20, PMID 32201449.

Ge R, Shen Z, Yin J, Chen W, Zhang Q, An Y. Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection. Slas Discov. 2022 Mar;27(2):79-85. doi: 10.1016/j.slasd.2022.01.001, PMID 35063690.

Imam SS, Imam ST, Mdwasifathar K, Kumar R, Ammar MY. Interaction between ace 2 and SARS-CoV2, and use of egcg and theaflavin to treat COVID 19 in initial phases. Int J Curr Pharm Sci. 2022:5-10. doi: 10.22159/ijcpr.2022v14i2.1945.

Saadh MJ. Omicron sars-CoV-2 variant, B.1.1.529: Severity, transmission, mutation, and efficacy of current vaccines. Int J App Pharm. 2022:12-5. doi: 10.22159/ijap.2022v14i3.44376, b1.1.

Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinform Biol Insights. 2021 Jun;15:11779322211025876. doi: 10.1177/11779322211025876, PMID 34220199.

He J, Hu L, Huang X, Wang C, Zhang Z, Wang Y. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitors. Int J Antimicrob Agents. 2020 Aug;56(2):106055. doi: 10.1016/j.ijantimicag.2020.106055, PMID 32534187.

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021 Mar;19(3):155-70. doi: 10.1038/s41579-020-00468-6, PMID 33116300.

Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP. Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2. EMBO J. 2020 Sep 15;39(18):e106275. doi: 10.15252/embj.2020106275, PMID 32845033.

McClain CB, Vabret N. SARS-CoV-2: the many pros of targeting PLpro. Signal Transduct Target Ther. 2020 Oct;5(1):223. doi: 10.1038/s41392-020-00335-z, PMID 33024071.

Li SW, Wang CY, Jou YJ, Yang TC, Huang SH, Wan L. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway. Sci Rep. 2016 May;6(1):25754. doi: 10.1038/srep25754, PMID 27173006.

Costanzi E, Kuzikov M, Esposito F, Albani S, Demitri N, Giabbai B. Structural and biochemical analysis of the dual inhibition of MG-132 against SARS-CoV-2 main protease (Mpro/3CLpro) and human cathepsin-L. Int J Mol Sci. 2021 Oct;22(21):11779. doi: 10.3390/ijms222111779, PMID 34769210.

Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020 Aug;30(8):678-92. doi: 10.1038/s41422-020-0356-z, PMID 32541865.

Su H, Yao S, Zhao W, Zhang Y, Liu J, Shao Q. Identification of pyrogallol as a warhead in the design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat Commun. 2021 Jun;12(1):3623. doi: 10.1038/s41467-021-23751-3, PMID 34131140.

Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci Adv. 2020 Dec;6(50):eabe0751. doi: 10.1126/sciadv.abe0751, PMID 33158912.

Ma C, Hu Y, Townsend JA, Lagarias PI, Marty MT, Kolocouris A. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol Transl Sci. 2020 Oct 9;3(6):1265-77. doi: 10.1021/acsptsci.0c00130, PMID 33330841.

Saadh MJ, Almaaytah AM, Alaraj M, Dababneh MF, Sa'Adeh I, Aldalaen SM, Kharshid AM, Alboghdadly A, Hailat M, Khaleel A, Al-Hamaideh KD. Punicalagin and zinc (II) ions inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Eur Rev Med Pharmacol Sci. 2021 May;25(10):3908-13.

Saadh MJ, Almaaytah AM, Alaraj M. Sauchinone with zinc sulphate significantly inhibits the activity of sars-cov-2 3cl-protease. Pharmacologyonline. 2021;2:242-8.

Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020 Jan;35(1):145-51. doi: 10.1080/14756366.2019.1690480, PMID 31724441.



How to Cite

SAADH, M. J. (2022). SARS-COV-2 3CL-PROTEASE INHIBITORS AS ANTIVIRAL AGENT AGAINST COVID-19. International Journal of Applied Pharmaceutics, 14(6), 18–20.



Review Article(s)