SILVER NANOPARTICLES INHIBIT INFECTIOUS BRONCHITIS VIRUS REPLICATION

Authors

  • MOHAMED J. SAADH Faculty of Pharmacy, Middle East University, Amman-11831, Jordan. Applied Science Research Center, Applied Science Private University, Amman, Jordan https://orcid.org/0000-0002-5701-4900

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48963

Keywords:

Silver nanoparticles, Antiviral activity, Infectious bronchitis virus, IBV genomes, Coronaviruses

Abstract

Objective: Avian infectious bronchitis virus (IBV) threatens the poultry industry and causes global economic losses. The IBV is highly variable. Thus, no effective drugs are available. Objective of the present study was to evaluate silver nanoparticles against it as an antiviral agent.

Methods: Silver nanoparticles (AgNPs) have been evaluated as antivirals against IBV. P. betle leaf extract biosynthesizes AgNPs from silver nitrate. UV/vis absorption, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) have been used to characterize AgNPs. TEM indicated particle sizes of 5–30 nm, and XRD demonstrated their characteristic AgNPs structure. The antiviral activity of AgNPs was measured by the log embryo infective dose 50 (logEID50)/ml and the number of IBV genome copies.

Results: XRD analysis showed a structure for AgNPs, and transmission electron microscopy showed a size of 5–30 nm for AgNPs. AgNPs at a noncytotoxic concentration inhibit the interaction between the virus and the cell, preventing the virus from entering the cell and reducing the number of IBV genome copies (per µl) in ovo by preventing the formation of the IBV RNA genome, resulting in a significant reduction in the IBV titer.

Conclusion: AgNPs possess antiviral properties that inhibit IBV replication in ovo. The findings indicate that AgNPs are a promising drug candidate for treating or preventing IBV infection.

Downloads

Download data is not yet available.

References

Nieto Torres JL, DeDiego ML, Verdia Baguena C, Jimenez Guardeno JM, Regla Nava JA, Fernandez Delgado R. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLOS Pathog. 2014;10(5):e1004077. doi: 10.1371/journal.ppat.1004077, PMID 24788150.

Schneider K, Klaas R, Kaspers B, Staeheli P. Chicken interleukin-6. cDNA structure and biological properties. Eur J Biochem. 2001;268(15):4200-6. doi: 10.1046/j.1432-1327.2001.02334.x, PMID 11488913.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. doi: 10.1038/s41586-020-2008-3, PMID 32015508.

Legnardi M, Tucciarone CM, Franzo G, Cecchinato M. Infectious bronchitis virus evolution, diagnosis and control. Vet Sci. 2020;7(2):79. doi: 10.3390/vetsci7020079, PMID 32580381.

Guzman M, Hidalgo H. Live attenuated infectious bronchitis virus vaccines in poultry: modifying local viral populations dynamics. Animals (Basel). 2020;10(11):2058. doi: 10.3390/ani10112058, PMID 33171704.

Saadh MJ. SARS-COV-2 3CL-protease inhibitors as antiviral agent against COVID-19. Int J App Pharm. 2022;14(6):18-20, doi: 10.22159/ijap.2022v14i6.46015.

Saadh MJ, Almaaytah AM, Alaraj M, Dababneh MF, Sa'adeh I, Aldalaen SM, Kharshid AM, Alboghdadly A, Hailat M, Khaleel A, Al-Hamaideh KD. Punicalagin and zinc (II) ions inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Eur Rev Med Pharmacol Sci. 2021;25(10):3908-13. doi: 10.26355/eurrev_202105_25958.

Sukumaran S, Sathianarayanan S. A review on COVID-19 pandemic a global threat-current status and challenges and preventive strategies. Int J App Pharm. 2021;13(5):10-4, doi: 10.22159/ijap.2021v13i5.42070.

Saadh MJ. Omicron sars-Cov-2 variant, b.1.1.529: severity, transmission, mutation, and efficacy of current vaccines. Int J App Pharm 2022;14:12-5. doi: 10.22159/ijap.2022v14i3.44376.

Saadh MJ. Green synthesis of silver nanoparticles using Piper betle exhibit high antimicrobial activity against Salmonella enteritidis and E. coli. Iraqi J Vet Sci. 2023;37(3):759-63, doi: 10.33899/IJVS.2023.136475.2585.

Saadh MJ, Jaber SA, Alaraj M, Alafnan A. Apigenin inhibits infectious bronchitis virus replication in ovo. Eur Rev Med Pharmacol Sci. 2022;26(15):5367-71. doi: 10.26355/eurrev_202208_29403, PMID 35993630.

Saadh MJ, Aldalaen SM. Inhibitory effects of epigallocatechin gallate (EGCG) combined with zinc sulfate and silver nanoparticles on avian influenza a virus subtype H5N1. Eur Rev Med Pharmacol Sci. 2021;25(6):2630-6. doi: 10.26355/eurrev_202103_25427, PMID 33829450.

Karna SR, RK, ND. Anticancer activity of silver nanoparticle of prodigiosin on lung cancer. Int J App Pharm. 2023;15(1):264-8, doi: 10.22159/ijap.2023v15i1.43628.

Nefedova E, Koptev V, Bobikova AS, Cherepushkina V, Mironova T, Afonyushkin V. The infectious bronchitis coronavirus pneumonia model presenting a novel insight for the SARS-CoV-2 dissemination route. Vet Sci. 2021;8(10):239. doi: 10.3390/vetsci8100239, PMID 34679068.

Saadh MJ, Aggag MM, Alboghdadly A, Kharshid AM, Aldalaen SM, Abdelrazek MA. Silver nanoparticles with epigallocatechingallate and zinc sulphate significantly inhibits avian influenza virus H9N2. Microb Pathog. 2021;158:(105071). doi: 10.1016/j.micpath.2021.105071, PMID 34182075.

Saadh M. Potent antiviral effect of green synthesis silver nanoparticles on Newcastle disease virus. Arab J Chem. 2022;15(7):103899. doi: 10.1016/j.arabjc.2022.103899.

Saadh MJ. Silver nanoparticles inhibit goatpox virus replication. Arch Virol. 2023;168(1):32. doi: 10.1007/s00705-022-05667-5, PMID 36604362.

Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16(10):8894-918. doi: 10.3390/molecules16108894, PMID 22024958.

Muhaimin M, Chaerunisaa AY, Rostinawati T, Amalia E, Hazrina A, Nurhasanah S. SA review on nanoparticles of Moringa oleifera extract: preparation, characterization, and activity. Int J App Pharm. 2023;15(4):43-51. doi: 10.22159/ijap.2023v15i4.47709.

Gupta MO. Biosynthesized silver nanoparticles using Catharanthus roseus and their antibacterial efficacy in synergy with antibiotics; a future advancement in nanomedicine. Asian J Pharm Clin Res. 2021;14(2):116-24, doi: 10.22159/ajpcr.2021.v14i2.39856.

Published

07-11-2023

How to Cite

SAADH, M. J. (2023). SILVER NANOPARTICLES INHIBIT INFECTIOUS BRONCHITIS VIRUS REPLICATION. International Journal of Applied Pharmaceutics, 15(6), 163–166. https://doi.org/10.22159/ijap.2023v15i6.48963

Issue

Section

Original Article(s)