NATURAL INHIBITOR OF AGRONOMICALLY REPELLENT PLANT TOWARDS CLINICAL ISOLATE OF CHLORAMPHENICOL RESISTANT-SALMONELLA TYPHI
DOI:
https://doi.org/10.22159/ijap.2022.v14s4.PP08Keywords:
Repellent, Toona sureni, Salmonella typhi, Chloramphenicol, MIC, MBCAbstract
Objective: This study was purposed to determine the most effective inhibition among those repellent plants i.e. The leaves of kirinyuh (Chromolaena odorata), kenikir (Cosmos caudatus), bandotan (Ageratum conyzoides), grass teki (Cyperus Cyperus rotundus), lemongrass (Cymbopogon citratus) and suren (Toona sureni) towards S. typhi clinical isolate.
Methods: The ethanolic extracts of sixt plants were obtained by maceration method using 70% ethanol. Phytochemical screening was done using the standard methods as described by Farnsworth. The inhibition of the repellent leaves ethanolic extracts to chloramphenicol resistant-S. typhi clinical isolate assayed using the agar diffusion method and statistically analyzed by ANOVA followed by the Duncan test. The most potential plant was further determined by investigating the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) value using the microdilution test.
Results: As the result, all ethanolic leaves extracts contain alkaloids, flavonoids, and tannins, except that tannins were not found in C. rotundus and A. conyzoides. However, all extracts had the activity to inhibit the growth of S. typhi. T. sureni leaves extract evidently showed the strongest inhibition with MIC value in the range of 1.5625<x≤3.125 mg/ml and the MBC value in the range of 6.25<x≤12.5 mg/ml. The ratio of MBC/MIC≤4, thus, T. sureni leaf extract may be classified as a strong bactericidal agent.
Conclusion: In summary, T. sureni extract leaves achieved the most appreciable value of MIC MBC and considered as the bactericidal agent which has strong potential to be a novel anti-typhoid fever agent.
Downloads
References
Liang P, Liu S, Xu F, Jiang S, Yan J, He Q. Corrigendum: powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle. Front Microbiol. 2019;10:1-12. doi: 10.3389/fmicb.2019.00001.
Dougan G, Baker S. Salmonella enterica serovar typhi and the pathogenesis of typhoid fever. Annu Rev Microbiol. 2014;68:317-36. doi: 10.1146/annurev-micro-091313-103739, PMID 25208300.
Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ. 2004;82(5):346-53. PMID 15298225.
Kothari AP, Pruthi A, Chugh TD. The burden of enteric fever. J Infect Dev Ctries. 2008;2(4):253-9. doi: 10.3855/jidc.218, PMID 19741285.
Paniker CK, Vimala KN. Transferable chloramphenicol resistance in Salmonella typhi. Nature. 1972;239(5367):109-10. doi: 10.1038/239109b0, PMID 4562109.
Ackers ML, Puhr ND, Tauxe RV, Mintz ED. Laboratory-based surveillance of salmonella serotype typhi infections in the United States: antimicrobial resistance on the rise. JAMA. 2000;283(20):2668-73. doi: 10.1001/jama.283.20.2668, PMID 10819949.
Kumar S, Rizvi M, Berry N. Rising prevalence of enteric fever due to multidrug-resistant Salmonella: an epidemiological study. J Med Microbiol. 2008;57(10):1247-50. doi: 10.1099/jmm.0.2008/001719-0, PMID 18809553.
Le Hello SL, Bekhit A, Granier SA, Barua H, Beutlich J, Zając M. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front Microbiol. 2013;4:395. doi: 10.3389/fmicb.2013.00395, PMID 24385975.
FDA. FDA warns about an increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients. US; 2017.
Usha Rani PU, Jyothsna Y. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol Plant. 2010;32(4):695-701. doi: 10.1007/s11738-009-0449-2.
War AR, Paulraj MG, War MY, Ignacimuthu S. Jasmonic acid-mediated-induced resistance in groundnut (Arachis hypogaea L.) against helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul. 2011a;30(4):512-23. doi: 10.1007/s00344-011-9213-0.
War AR, Paulraj MG, War MY, Ignacimuthu S. Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Plant Signal Behav. 2011b;6(11):1769-77. doi: 10.4161/psb.6.11.17323, PMID 22042128.
Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169-84. doi: 10.1111/j.0105-2896.2004.0124.x, PMID 15199962.
Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med. 2003;254(3):197-215. doi: 10.1046/j.1365-2796.2003.01228.x, PMID 12930229.
Ng TB. Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides. 2004;25(7):1215-22. doi: 10.1016/j.peptides.2004.03.012, PMID 15245883.
Huzni H, Mazpupah M, Bambang TR, Hagus T. Uji laboratorium ekstrak kirinyuh (Chromolaena odorata) sebagai nematisida nabati terhadap Meloidogyne sp. J HPT. 2015;4336:2338.
Safita S, Gaty G, Endah RES, Livia S, Daun Kenikir UAA. (Cosmos caudatus Kunth.) dan Daun Sintrong (Crassocephalum crepidioides (Benth.) S. Moore.) terhadap Bakteri Staphylococcus aureus dan Pseudomonas aeruginosa. Dalam Safita. Prosiding Penelitian SPeSIA Unisba; 2015. p. 421-8.
Gbadamosi TI. Evaluation of antibacterial activity of six Etnobotanicals used in the treatment of infectious diseases in Nigeria. Bot Res Int. 2012;5:83-9.
Kabbashi K, Ahmed S, Seif EAM, Aisha ZA, Ibrahim FA. Antimicrobial activity and cytotoxicity of ethanolic extract of Cyperus rotundus L. Am J Pharm Pharm Sci. 2015;2:1-13.
Almeida RBA, Akisue G, Cardoso LML, Junqueira JC, Jorge AC. Antimicrobial activity of the essential oil of cymbopogon citratus (DC) Stapf. on staphylococcus spp., streptococcus mutans and Candida spp. Rev Bras Plantas Med. 2013;15(4):474-82. doi: 10.1590/S1516-05722013000400002.
Fallah S, Didit H, Popi AK, Syaefudin S, Daun Suren KFE. (Toona sureni) serta Uji Sitotoksisitasnya terhadap Sel Vero dan MCF-7. J Ilmu Kefarmasian Indones. 2015;13:174-80.
Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci. 1966;55(3):225-76. doi: 10.1002/jps.2600550302, PMID 5335471.
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. CLSI M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute; 2013.
International standard. ISO 20776-1. Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices-Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial AGENTS against rapidly growing aerobic bacteria involved in infectious diseases. 2nd ed. Geneva, Switzerland: International Organization for Standardization; 2019.
Angulo FJ, Tippen S, Sharp DJ, Payne BJ, Collier C, Hill JE. A community waterborne outbreak of salmonellosis and the effectiveness of a boil water order. Am J Public Health. 1997;87(4):580-4. doi: 10.2105/ajph.87.4.580, PMID 9146435.
Santhosh RS, Suriyanarayanan B. Plants: A source for new antimycobacterial drugs. Planta Med. 2014;80(1):9-21. doi: 10.1055/s-0033-1350978, PMID 24218370.
Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med. 2017;8(4):266-75. doi: 10.1016/j.jaim.2017.05.004, PMID 28869082.
Anand U, Jacobo Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):1-13. doi: 10.3390/metabo9110258, PMID 31683833.
Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology Evolution and Systematics. 2007;8(4):157-78. doi: 10.1016/j.ppees.2007.01.001.
Menon V, Rao M. Protease inhibitors: emphasizing functional aspects of aspartic protease inhibitors. Funct Plant Sci Biotechnol. 2012;6:1-67.
Wielkopolan B, Obrępalska Stęplowska A. Three-way interaction among plants, bacteria, and coleopteran insects. Planta. 2016;244(2):313-32. doi: 10.1007/s00425-016-2543-1.
Gatsing D, Adoga GI. Antisalmonellal activity and phytochemical screening of the various parts of Cassia petersiana Bolle (Caesalpiniaceae). Res J Microbiol. 2007;2:876-80.
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41, PMID 28620474.
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12-23. doi: 10.1016/j.ajps.2017.08.004, PMID 32104374.
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal. 2013;2013:162750. doi: 10.1155/2013/162750. PMID 24470791.
Jucá MM, Cysne Filho FMS, de Almeida JC, Mesquita DDS, Barriga JRM, Dias KCF. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020;34(5):692-705. doi: 10.1080/14786419.2018.1493588. PMID 30445839.
Kusuma SAF, Mita SR, Ermawati RF. Effect of maltodextrin ratio to Klutuk banana fruit extract (Musa Balbisiana Colla) combined with its pseudostem extract on anti-dysentery granule performance and effectivity. Int J App Pharm. 2018;10(6):187-93. doi: 10.22159/ijap.2018v10i6.29305.
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015;22(1):132-49. doi: 10.2174/0929867321666140916113443, PMID 25245513.
Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343-56. doi: 10.1016/j.ijantimicag.2005.09.002, PMID 16323269.
Gorniak I, Bartoszewski R, Kroliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18(1):241-72. doi: 10.1007/s11101-018-9591-z.
Donadio G, Mensitieri F, Santoro V, Parisi V, Bellone ML, De Tommasi N. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics. 2021;13(5):1-23. doi: 10.3390/pharmaceutics13050660, PMID 34062983.
Wu T, Zang X, He M, Pan S, Xu X. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem. 2013;61(34):8185-90. doi: 10.1021/jf402222v, PMID 23926942.
Xu HX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res. 2001;15(1):39-43. doi: 10.1002/1099-1573(200102)15:1<39::aid-ptr684>3.0.co;2-r, PMID 11180521.
Song M, Liu Y, Li T, Liu X, Hao Z, Ding S. Plant natural flavonoids against multidrug resistant pathogens. Adv Sci (Weinh). 2021;8(15):1-11e2100749. doi: 10.1002/advs.202100749, PMID 34041861.
Ruddock PS, Charland M, Ramirez S, Lopez A, Neil Towers GHN, Arnason JT. Antimicrobial activity of flavonoids from piper lanceaefolium and other colombian medicinal plants against aantibiotic susceptible and resistant strains of Neisseria Gonorrhoeae. Sex Transm Dis. 2011;38(2):82-8. doi: 10.1097/OLQ.0b013e3181f0bdbd, PMID 20921932.
Abreu AC, Serra SC, Borges A, Saavedra MJ, Mcbain AJ, Salgado AJ. Combinatorial activity of flavonoids with antibiotics against drug-resistant staphylococcus aureus. Microb Drug Resist. 2015;21(6):600-9. doi: 10.1089/mdr.2014.0252, PMID 25734256.
Ugboko H, De H. Mechanisms of antibiotic resistance in Salmonella typhi. Int J Curr Microbiol Appl Sci. 2014;3:461-76.
Khan MI, Ahhmed A, Shin JH, Baek JS, Kim MY, Kim JD. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and Gram negative bacteria, a comprehensive study in vitro and in vivo. Evid Based Complementary Alternat Med. 2018;1-12:3486106. doi: 10.1155/2018/3486106, PMID 30598684.
Winter WP. American society of hematology. 36th annual meeting. December 2-6, 1994, Nashville, Tennessee. Abstracts. Blood. 1994;84(10)Suppl 1:1-743, PMID 7949116.
Romo MR, Perez Martınez D, Ferrer CC. Innate immunity in vertebrates: an overview. Eur J Immunol. 2016;148:125-39.
Arabski MS, Wasik KS, Dworecki WK, Kaca W. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of proteus mirabilis lipopolysaccharides and cells. J Microbiol Methods. 2009;77(2):179-83178-83. doi: 10.1016/j.mimet.2009.01.020, PMID 19318050.
Li N, Tan SN, Cui J, Guo N, Wang W, Zu YG. PA-1, A novel synthesized pyrrolizidine alkaloid, inhibits the growth of escherichia coli and staphylococcus aureus by damaging the cell membrane. J Antibiot (Tokyo). 2014;67(10):689-96. doi: 10.1038/ja.2014.49, PMID 24894184.
Larghi EL, Bracca AB, Arroyo Aguilar AA, Heredia DA, Pergomet JL, Simonetti SO. Neocryptolepine: A promising Indoloisoquinoline alkaloid with interesting biological activity. Evaluation of the drug and its most relevant analogs. Curr Top Med Chem. 2015;15(17):1683-707. doi: 10.2174/1568026615666150427113937, PMID 25915612.
Klug TV, Novello J, Laranja DC, Aguirre TAS, de Oliveira R, Ade Oliveira Rios A, Tondo EC. Effect of tannin extracts on biofilms and attachment of Escherichia coli on lettuce leaves. Food Bioprocess Technol. 2017;10(2):275-83. doi: 10.1007/s11947-016-1812-0.
Dettweiler M, Lyles JT, Nelson K, Dale B, Reddinger RM, Zurawski DV. american civil war plant medicines inhibit growth, biofilm formation, and quorum sensing by multidrug-resistant bacteria. Sci Rep. 2019;9(1):1-12:7692. doi: 10.1038/s41598-019-44242-y, PMID 31118466.
Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989;3(12):1825-31. doi: 10.1111/j.1365-2958.1989.tb00169.x, PMID 2695751.
Wachtel R, Brauning B, Mader SL, Ecker F, Kaila VRI, Groll M. The protease GtgE from salmonella exclusively targets inactive Rab GTPases. Nat Commun. 2018;39(1):1-13. doi: 10.1038/s41467-017-02110-1, PMID 29298974.
Dabhade A, Priti P, Ulhas P, Dabhade A, Patel P, Pati U. Proteinaceous protease inhibitor from Lawsonia inermis: purification, characterization and antibacterial activity. Nat Prod Commun. 2013;8(10):1467-70. PMID 24354203.
Arulpandi I, Sangeetha R. Antibacterial activity of Fistulin: A protease inhibitor purified from the leaves of cassia fistula. ISRN Pharm. 2012;2012:1-4584073. doi: 10.5402/2012/584073, PMID 22779011.
Bijina B, Chellappan S, Krishna JG, Basheer SM, Elyas KK, Bahkali AH. Protease Iinhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi J Biol Sci. 2011;18(3):273-81. doi: 10.1016/j.sjbs.2011.04.002, PMID 23961135.
Fallah S, Didit H, Popi AK, Syaefudin S, Daun Sereh KFE. (Toona sureni) serta uji sitotoksisitasnya terhadap sel vero dan MCF-7. J Ilmu Kefarmasian Indones. 2015;13:174-80.
Prasetyo HD, Wayan IS, ketut S. Efikasi minyak atsiri sereh dapur (Cymbopogon citratus L.) terhadap hama ulat daun kubis (Plutella xylostella L.) di Laboratorium. E-Jurnal Agroteknologi Tropika. 2013;2:99-107.
Sivapalan SR. Medicinal uses and pharmalogical activities of cyperus rotundus. Int J Sci Res Publ. 2013;3:1-8.
Singh SB, Devi WR, Maria A, Devi WI, Swapana N, Chingakham BS. Ethnobotany, phytochemistry, and pharmacology of ageratum conyzoides (Asteraceae). J Medic Plants Res. 2012;7:371-85.
Janarthanan L, Karthikeyan V, Jekykar B, Balakhrisnan BR, Senthilkumar KL, Anandharaj G. Pharmacognostic studies on the whole plants of Ageratum conyzoides (Asteraceae). Eur J Pharm Res. 2016;3:618-26.
Uyub AM, Nwachukwu IN, Azlan AA, Fariza SS. In vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole resistant Helicobacter pylori and some pathogenic bacteria. Ethnobot Res Appl. 2010;8:95-106.
Nurhasbah N, Safrida S, Asiah A, Daun Kirinyuh UTE. (Eupatorium odoratum L.) terhadap mortalitas keong mas (Pomacea canaliculata). J Ilmiah Mahasiswa Fak Keguruan Ilmu Pendidikan Unsyiah. 2017;2:31-9.
Mushi NF, Mbwambo ZH, Innocent E, Tewtrakul S. Antibacterial, Aanti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae). BMC Complement Altern Med. 2012;12:371-85163. doi: 10.1186/1472-6882-12-163, PMID 23013240.
Published
How to Cite
Issue
Section
Copyright (c) 2022 SRI AGUNG FITRI KUSUMA, IRMA ERIKA HERAWATI, DANNI RAMDHANI, BAGUS MAULANA
This work is licensed under a Creative Commons Attribution 4.0 International License.