• SRI AGUNG FITRI KUSUMA Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia 45363
  • ADE ZUHROTUN Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia 45363
  • DWI RAHMAT NOARI Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia 45363



Pennisetum purpureum S., Imperata cylindrica L., Hedyotis corymbosa L., Cyperus rotundus L., Shigella dysentriae, Resistant


Objective: Elephant grass (Pennisetum purpureum S.), weed grass (Imperata cylindrica L.), pearl grass (Hedyotis corymbosa L.) and nut grass (Cyperus rotundus L.) are selected weeds found in Indonesia which have been used as ruminants feeding with a complete diet component and evidently reported that bioactive contents of weeds provide more protection to microbial attack than that of crops. This has led to an increase interest in the investigation of weed extracts as anti-shigellosis agents for humans and animals, but there is still no data regarding on phytochemical and pharmacological of our selected weeds as an anti-shigellosis. Therefore, the objectives of this study was to analyze phytochemical and anti-shigellosis properties of those selected weeds towards sensitive (S) and resistant S. dysentriae (R) strains of ampicillin, chloramphenicol, and cotrimoxazoles.

Methods: Phytochemical screening was done using the standard method and further analyzed by thin-layer chromatography (TLC). The anti-shigellosis activity was evaluated using the agar diffusion method; meanwhile, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) value was determined using the microdilution method.

Results: In general, weeds contain flavonoids, steroid, and quinone compounds. The resulted anti-shigellosis showed that all weed extracts produced higher inhibition to sensitive than resistant strains. The MIC-MBC values of each weed on sensitive and resistant, respectively, were as follow: P. purpureum S (S=≥1.25%; R=≥2.5% w/v); I. cylindrica (S=≥5.0%; R=≥ 2.5-10.0%w/v); H. corymbosa (S=≥2.5%; R=≥2.5-10%w/v); and C. rotundus (S=≥2.5-5.0%; R=≥5.0-10%w/v). From these data, all of these weeds have the potential to complement antibiotics that are no longer effective in the treatment of shigella infections.

Conclusion: In summary, P. purpureum extract could be promoted as a novel supplement phytopharmaceutical for the treatment of bacillary dysentery.


Download data is not yet available.


Williams PCM, Berkley JA. Guidelines for the treatment of dysentery (shigellosis): A systematic review of the evidence. Paediatr Int Child Health. 2018;38(Suppl 1):S50-65. doi: 10.1080/20469047.2017.1409454, PMID 29790845.

Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol. 2022;7(2):251-61. doi: 10.1038/s41564-021-01054-z, PMID 35102306.

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. doi: 10.1016/S1473-3099(17)30753-3, PMID 29276051.

Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016. Lancet Infect Dis. 2018;18(11):1229-40. doi: 10.1016/S1473-3099(18)30475-4, PMID 30266330.

Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60-98. doi: 10.1093/oxfordjournals.epirev.a036079, PMID 1765120.

World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae 1. Switzerland: WHO document production services; 2005.

Jawetz E, Melnick JL, Adelberg EA. Jawetz, Melnick, and Adelberg’s medical microbiology. New York: McGraw-Hill Medical; 2010.

Health technology assessment Indonesia. Penggunaan Siprofloksasin di Indonesia. Indonesia: HTA; 2005.

Rahman M, Shoma S, Rashid H, El Arifeen S, Baqui AH, Siddique AK. Increasing spectrum in antimicrobial resistance of Shigella isolates in Bangladesh: resistance to azithromycin and ceftriaxone and decreased susceptibility to ciprofloxacin. J Health Popul Nutr. 2007;25(2):158-67. PMID 17985817.

Bhattacharya D, Sugunan AP, Bhattacharjee H, Thamizhmani R, Sayi DS, Thanasekaran K. Antimicrobial resistance in Shigella–rapid increase & widening of spectrum in Andaman Islands, India. Indian J Med Res. 2012;135:365-70. PMID 22561624.

Puzari M, Sharma M, Chetia P. Emergence of antibiotic-resistant Shigella species: A matter of concern. J Infect Public Health. 2018;11(4):451-4. doi: 10.1016/j.jiph.2017.09.025, PMID 29066021.

Niyogi SK. Shigellosis. J Microbiol. 2005;43(2):133-43. PMID 15880088.

Hedge MM, Lakshman K, Girija K, Kumar BSA, Lakshmiprasanna V. Assessment of antidiarrhoeal activity of Desmostachya bipinnata L. (Poaceae) root extracts. Bol Latinoam Caribe Plant Med Aromat. 2010;9:312-8.

Chaudhari Y, Mody HR, Acharya VB. Antibacterial activity of cyanodon dactylon on different bacterial pathogens isolated from clinical samples. Int J Pharm Sci. 2011;II:16-20.

Igoli JO, Ogaji OG, Tor-Anyiin TA, Igoli NP. Traditional medicine practice amongst the Igede people of Nigeria. Part II. Afr J Trad Compl Alt Med. 2005;2(2):134-52. doi: 10.4314/ajtcam.v2i2.31112.

Rahmatullah M, Al-Mahmud A, Rahman MdA, Uddin MdF, Hasan M, Khatun Mst A. An ethnomedicinal survey conducted amongst folk medicinal practitioners in the Two Southern districts of Noakhali and feni, Bangladesh. Am Eurasian J Sustain Agric. 2011;5:115-31.

Kumar RP, Rajesh K, Yogender M, Dharmesh S. Standardization and preliminary phytochemical investigation on Cyperus rotundus linn rhizome. Int J Ayurveda Res. 2010;1:536-42.

Chaulya NC, Haldar PK, Mukherjee A. Antidiarrhoeal activity of methanol extract of the rhizomes of Cyperus Tegetum Roxb. Int J Pharm Pharm Sci. 2010;3:133-5.

Sharma D, Lavania AA, Sharma A. In vitro comparative screening of antibacterial and antifungal activities of some common plants and weeds extracts. Asian J Exp Sci. 2009;23:169-72.

Udayaprakash NK, Bhuvaneswari S, Aravind R, Kaviyarasan V, Sekarbabu H. A comparative study on antibacterial activity of common weeds. Int J Pharm Biol Sci. 2011;2:677-83.

Singh G, Kumar P. Phytochemical study and screening for antimicrobial activity of flavonoids of Euphorbia hirta. Int J Appl Basic Med Res. 2013;3(2):111-6. doi: 10.4103/2229-516X.117082, PMID 24083146.

Sarker SD, Latif Z, Gray AI. Methods in biotechnology: natural product isolation. 2nd ed. NJ: Humana Press; 2006.

Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci. 1966;55(3):225-76. doi: 10.1002/jps.2600550302. PMID 5335471.

Mgbeahuruike EE, Vuorela H, Yrjonen T, Holm Y. Optimization of thin-layer chromatography and high-performance liquid chromatographic method for piper guineense extracts. Nat Prod Commun. 2018;13(1):25-8. doi: 10.1177/1934578X1801300109.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. CLSI M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute; 2013.

International standard. ISO 20776-1. Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices-part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial AGENTS against rapidly growing aerobic bacteria involved in infectious diseases. 2nd ed. Geneva, Switzerland: International Organization for Standardization; 2019.

Bowen A, Hurd J, Hoover C, Khachadourian Y, Traphagen E, Harvey E. Importation and domestic transmission of Shigella sonnei resistant to ciprofloxacin–United States. MMWR Morb Mortal Wkly Rep. 2015;64(12):318-20. PMID 25837241.

Traa BS, Walker CLF, Munos M, Black RE. Antibiotics for the treatment of dysentery in children. Int J Epidemiol. 2010;39Suppl 1:i70–i84i70-4. doi: 10.1093/ije/dyq024, PMID 20348130.

Qiu S, Wang Y, Xu X, Li P, Hao R, Yang C. Multidrug-resistant atypical variants of shigella flexneri shigella flexneri in China. Emerg Infect Dis. 2013;19(7):1147-50. doi: 10.3201/eid1907.111221, PMID 23763754.

Raja SB, Murali MR, Devaraj SN. Differential expression of OmpC and OmpF in multidrug-resistant Shigella dysenteriae and Shigella flexneri by aqueous extract of Aegle marmelos, altering its susceptibility toward beta-lactam antibiotics. Diagn Microbiol Infect Dis. 2008;61(3):321-8. doi: 10.1016/j.diagmicrobio.2008.02.006, PMID 18358664.

Kar AK, Ghosh AS, Chauhan K, Ahamed J, Basu J, Chakrabakrti P. Involvement of A 43-kilodalton outer membrane protein in beta-lactam resistance of Shigella dysenteriae. Antimicrob Agents Chemother. 1997;41(10):2302-4. doi: 10.1128/AAC.41.10.2302, PMID 9333070.

Mandomando I, Jaintilal D, Pons MJ, Valles X, Espasa M, Mensa L. Antimicrobial susceptibility and mechanisms of resistance in Shigella and salmonella isolates from children under five years of age with diarrhea in rural Mozambique. Antimicrob Agents Chemother. 2009;53(6):2450-4. doi: 10.1128/AAC.01282-08, PMID 19332670.

Zhu Z, Cao M, Zhou X, Li B, Zhang J. Epidemic characterization and molecular genotyping of Shigella flexneri isolated from calves with diarrhea in Northwest China. Antimicrob Resist Infect Control. 2017;6:1-1192. doi: 10.1186/s13756-017-0252-6, PMID 28878891.

WHO. Antimicrobial resistance. Switzerland: WHO document production services; 2016.

Narayanan AS, Raja SS, Ponmurugan K, Kandekar SC, Natarajaseenivasan K, Maripandi A. Antibacterial activity of selected medicinal plants against multiple antibiotic resistant uropathogens: A study from Kolli Hills, Tamil Nadu, India. Benef Microbes. 2011;2(3):235-43. doi: 10.3920/BM2010.0033, PMID 21986363.

Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev. 2017;11(22):57-72. doi: 10.4103/phrev.phrev_21_17, PMID 28989242.

Stefanovic O, Comic L. Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. J Appl Pharm Sci. 2012;2:1-5.

Wink M, Ashour ML, El-Readi MZ. Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front Microbiol. 2012;3:1–15130. doi: 10.3389/fmicb.2012.00130, PMID 22536197.

Yahaya ES, Cordier W, Steenkamp PA, Steenkamp V. Effect of ethnomedicinal extracts used for wound healing on cellular migration and intracellular reactive oxygen species release in SC-1 fibroblasts. S Afr J Bot. 2018;118:11-7. doi: 10.1016/j.sajb.2018.06.003.

Vaid PK, Kumar A, Singh M, Tyagi V, Kushwaha A. Studies on macroscopic, microscopic, and TLC based phytochemical analysis of Euphorbia thymifolia Linn. Int J Life Sci Scient Res IJLSSR. 2018;4(3):1744-52. doi: 10.21276/ijlssr.2018.4.3.2.

Marliana SD, Suryanti V, Suyono S. The phytochemical screenings and thin layer chromatography analysis of chemical compounds in ethanol extract of Labu Siam fruit (Sechium edule Jacq. Swartz.). Biofarmasi J Nat Prod Biochem. 2005;3:26-31.

Gupta PD, Daswani PG, Birdi TJ, Birdi T, Gupta P, Daswani P. Approaches in fostering quality parameters for medicinal botanicals in the Indian context. Indian J Pharmacol. 2014;46(4):363-71. doi: 10.4103/0253-7613.135946.

Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12-23. doi: 10.1016/j.ajps.2017.08.004, PMID 32104374.

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal. 2013;2013:162750. doi: 10.1155/2013/162750. PMID 24470791.

Juca MM, Cysne Filho FMS, de Almeida JC, Mesquita DDS, Barriga JRM, Dias KCF. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020;34(5):692-705. doi: 10.1080/14786419.2018.1493588. PMID 30445839.

Kusuma SAF, Mita SR, Ermawati RF. Effect of maltodextrin ratio to Klutuk banana fruit extract (Musa Balbisiana Colla) combined with its pseudostem extract on anti-dysentery granule performance and effectivity. Int J App Pharm. 2018;10(6):187-93. doi: 10.22159/ijap.2018v10i6.29305.

Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2014;22(1):132–-49. doi: 10.2174/0929867321666140916113443, PMID 25245513.

Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343-56. doi: 10.1016/j.ijantimicag.2005.09.002, PMID 16323269.

Gorniak I, Bartoszewski R, Kroliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18(1):241-72. doi: 10.1007/s11101-018-9591-z.

Donadio G, Mensitieri F, Santoro V, Parisi V, Bellone ML, De Tommasi N. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics. 2021;13(5):1-23. doi: 10.3390/pharmaceutics13050660, PMID 34062983.

Wu T, Zang X, He M, Pan S, Xu X. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem. 2013;61(34):8185-90. doi: 10.1021/jf402222v, PMID 23926942.

Cazarolli LH, Zanatta L, Alberton EH, Fiqgueiredo MS, Folador P, Damazio RG. Flavonoids: prospective drug candidates. Mini Rev Med Chem. 2008;8(13):1429–-40. doi: 10.2174/138955708786369564, PMID 18991758.

Locher CP, Burch MT, Mower HF, Berestecky J, Davis H, Van-Poel B. Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. J Ethnopharmacol. 1995;49(1):23-32. doi: 10.1016/0378-8741(95)01299-0, PMID 8786654.

Zeng F, Wang W, Wu Y, Dey M, Ye M, Avery MA. Two prenylated and C-methylated flavonoids from Tripterygium wilfordii. Planta Medica. 2010;76(14):1596-9. doi: 10.1055/s-0029-1241017, PMID 20309799.

Davidson PM, Naidu AS. Phytophenols. Natural food antimicrobial systems. CRC Press; 2000.

Munyendo WLL, Orwa JA, Rukunga GM, Bii CC. Bacteriostatic and bactericidal activities of Aspilia mossambicensis, Ocimum gratissimum and Toddalia asiatica extracts on selected pathogenic bacteria. Res J Med Plants. 2011;5(6):717-27. doi: 10.3923/rjmp.2011.717.727.

Tapas R, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res. 2008;7:1089-99.

Klug TV, Novello J, Laranja DC, Aguirre TAS, de Oliveira R, Ade Oliveira Rios A, Tondo EC. Effect of tannin extracts on biofilms and attachment of Escherichia coli on lettuce leaves. Food Bioprocess Technol. 2017;10(2):275-83. doi: 10.1007/s11947-016-1812-0.

Dettweiler M, Lyles JT, Nelson K, Dale B, Reddinger RM, Zurawski DV. American Civil War plant medicines inhibit growth, biofilm formation, and quorum sensing by multidrug-resistant bacteria. Sci Rep. 2019;9(1):1-12:7692. doi: 10.1038/s41598-019-44242-y, PMID 31118466.

Saura Calixto F, Perez Jimenez J. Tannins: bioavailability and mechanisms of action. In: Knasmuller S, DeMarini DM, Johnson I, Gerhauser C. editors. Chemoprevention of cancer and DNA damage by dietary factors. Weinheim, Germany: Wiley-VCH Press; 2009.

Haslam E. Natural polyphenols (Vegetable tannins) As rugs: possible Modes of Action. J Nat Prod. 1996;59(2):205-15. doi: 10.1021/np960040+, PMID 8991956.

Kang J, Liu L, Liu M, Wu X, Li J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control. 2018;94:147-54. doi: 10.1016/j.foodcont.2018.07.011.

Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 2012;7(8):979-90. doi: 10.2217/fmb.12.68, PMID 22913356.

Oyekunle MA, Aiyelaagbe OO, Fafunso MA. Evaluation of the antimicrobial activity of saponins extract of Sorghum bicolor L. Moench. African J Biotechnol. 2006;5:31-9.

Ciocan D, Bara I. Plant products as antimicrobial agents. Analele Stiinţifice Ale Univ Alexandru Ioan Cuza Din Iasi II A Genet si Biol Mol. 2007;8:151-6.

Khan MI, Ahhmed A, Shin JH, Baek JS, Kim MY, Kim JD. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and ram negative bacteria, a comprehensive study in vitro and in vivo. Evid Based Complementary Alternat Med. 2018;1-12:3486106. doi: 10.1155/2018/3486106, PMID 30598684.

Winter WP. American Society of Hematology. 36th annual meeting. December 2-6, 1994, Nashville, Tennessee. Abstracts. Blood. 1994;84(10)Suppl 1:1-743, PMID 7949116.

Romo MR, Perez Martınez D, Ferrer CC. Innate immunity in vertebrates: an overview. Eur J Immunol. 2016;148:125-39.

Arabski MS, Wasik KS, Dworecki WK, Kaca W. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of proteus mirabilis lipopolysaccharides and cells. J Microbiol Methods. 2009;77(2):179-83178-83. doi: 10.1016/j.mimet.2009.01.020, PMID 19318050.

Sakagami H, Kushida T, Makino T, Hatano T, Shirataki Y, Matsuta T. Functional analysis of natural polyphenols and saponins as alternative medicines. Complement Med Resources. 2012;2012:269-302.

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48Suppl 1:5-16. doi: 10.1093/jac/48.suppl_1.5, PMID 11420333.

Gatsing D, Adoga GI. Antisalmonellal activity and phytochemical screening of the various parts of cassia petersiana bolle (Caesalpiniaceae). Res J Microbiol. 2007;2:876-80.

Ashok PK, Upadhyaya K. Tannins are astringent. J Pharmacogn Phytochem. 2012;1:2-6.



How to Cite




Original Article(s)

Most read articles by the same author(s)

1 2 > >>