Β-LACTAMASES INHIBITOR-PRODUCING SOIL BACTERIA FOR AMPICILLIN-RESISTANT UROPATHOGENIC ESCHERICHIA COLI ISOLATE
DOI:
https://doi.org/10.22159/ijap.2022.v14s5.03Keywords:
®-lactamase, Soil, Inhibitor, Escherichia coli, Ampicillin, Serratia marcescensAbstract
Objective: The goals of this investigation were to identify the species of the producers and ascertain the dose-dependent effect of extracellular products of Indonesian bacteria that generate β-lactamases inhibitors.
Methods: An agar diffusion technique for the lactamase inhibitor activity assay was performed. Observation of bacteria using phenotypic analysis was performed by observing colony color and cell shape morphology, biochemical assays and a series of carbohydrate fermentation tests. Bacterial identification was performed by comparing the nucleotide sequence of the 16S rDNA gene of target bacteria with available nucleotide sequences in Gene Library (NCBI). Combining data from phenotypic and genotypic analyses allowed for the identification of the producers.
Results: According to our findings, none of the bacteria's extracellular products, which contain β-lactamase inhibitors in a range of concentrations, showed a discernible impact on the values of the inhibition zone. The producers are Aeromonas popoffii, Alcaligenes faecalis, Streptomyces brasiliensis, Staphylococcus equorum, Pseudomonas putida, Pseudomonas fluorescens, Salmonella typhi, Enterobacter hormaechei, Serratia marcescens and Enterobacter sp. The highest potency of β-lactamase inhibitor was provided by the extracellular product of VR3 isolate bacteria which was identified as Serratia marcescens.
Conclusion: In conclusion, this study clearly showed that our isolated bacteria have the potential to be further investigated in order to maximize the recovery of β-lactamase inhibitor compounds.
Downloads
References
Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician. 2011;84(7):771-6. PMID 22010614.
Syahputra RRI, Agustina D, Wahyudi SS. The sensitivity pattern of bacteria against antibiotics in urinary tract infection patients at RSD DR. Soebandi Jember. AMS. 2018;4(3):171-7. doi: 10.19184/ams.v4i3.6786.
Gupta K, Hooton TM, Wobbe CL, Stamm WE. The prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in young women. Int J Antimicrob Agents. 1999;11(3-4):305-8. doi: 10.1016/s0924-8579(99)00035-7, PMID 10394988.
Kahlmeter G, The ECO. SENS Project: a prospective, multinational, multicentre epidemiological survey of the prevalence and antimicrobial susceptibility of urinary tract pathogens-interim report. J Antimicrob Chemother. 2000;46(1):15-22.
Alanazi MQ, Alqahtani FY, Aleanizy FS. An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: retrospective study. Ann Clin Microbiol Antimicrob. 2018;17(1):3. doi: 10.1186/s12941-018-0255-z, PMID 29422058.
Pandey N, Cascella M. Beta lactam antibiotics. Treasure Island, (FL): StatPearls Publishing; 2021.
Khanna NR, Gerriets V. Beta lactamase inhibitors. StatPearls; 2021.
Carcione D, Siracusa C, Sulejmani A, Leoni V, Intra J. Old and new beta-lactamase inhibitors: Molecular Structure, mechanism of action, and clinical use. Antibiotics (Basel). 2021;10(8):1-14. doi: 10.3390/antibiotics10080995, PMID 34439045.
Oh JM, Venters CC, Di C, Pinto AM, Wan L, Younis I. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun. 2020;11(1):1. doi: 10.1038/s41467-019-13993-7. PMID 31911652.
Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160-201. doi: 10.1128/CMR.00037-09, PMID 20065329.
Viana Marques DAV, Machado SEF, Ebinuma VCS, Duarte CAL, Converti A, Porto ALF. Production of β-lactamase inhibitors by Streptomyces species. Antibiotics. 2018;7(3):1-26. doi: 10.3390/antibiotics7030061.
Parani K, Shetty GP, Saha BK. Isolation of Serratia marcescens SR1 as a source of chitinase having the potentiality of using as a biocontrol agent. Indian J Microbiol. 2011;51(3):247-50. doi: 10.1007/s12088-011-0065-x, PMID 22753998.
Yoon HJ, Choi JY, Park YS, Kim CO, Kim JM, Yong DE. Outbreaks of Serratia marcescens bacteriuria in a neurosurgical intensive care unit of a tertiary care teaching hospital: a clinical, epidemiologic, and laboratory perspective. Am J Infect Control. 2005;33(10):595-601. doi: 10.1016/j.ajic.2005.01.010, PMID 16330308.
Crivaro V, Bagattini M, Salza MF, Raimondi F, Rossano F, Triassi M. Risk factors for extended-spectrum beta-lactamase-producing Serratia marcescens and Klebsiella pneumoniae acquisition in a neonatal intensive care unit. J Hosp Infect. 2007;67(2):135-41. doi: 10.1016/j.jhin.2007.07.026, PMID 17884248.
Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969-76. doi: 10.1128/AAC.01009-09, PMID 19995920.
Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol. 2011;65:455-78. doi: 10.1146/annurev-micro-090110-102911, PMID 21740228.
Cartwright SJ, Waley SG. β-lactamase inhibitors. Med Res Rev. 1983;3(4):341-82. doi: 10.1002/med.2610030402, PMID 6358721.
Brenner DG, Knowles JR. Penicillanic acid sulfone: nature of irreversible inactivation of RTEM beta-lactamase from Escherichia coli. Biochemistry. 1984;23(24):5833-9. doi: 10.1021/bi00319a024, PMID 6098299.
Knowles JR. Penicillin resistance: the chemistry of β-lactamase inhibition. Acc Chem Res. 1985;18(4):97-104. doi: 10.1021/ar00112a001.
Gerba CP. Encyclopedia of soils in the environment. Waste disposal on land. In: Liquid. Amsterdam: Elsevier; 2005.
Published
How to Cite
Issue
Section
Copyright (c) 2022 SRI AGUNG FITRI KUSUMA, VALENTINA YURINA, DEBBIE S. RETNONINGRUM, INDAH LAILY HILMI, SUSI AFRIANTI RAHAYU, YUNI NOER ANGGRAINI
This work is licensed under a Creative Commons Attribution 4.0 International License.