POTENTIAL OF KABAU LEAF ETHANOL EXTRACT (ARCHIDENDRON BUBALINUM (JACK.) I. C. NIELSEN) TO DECREASE OF BLOOD GLUCOSE LEVELS INDUCED ALLOXAN
DOI:
https://doi.org/10.22159/ijap.2022.v14s5.05Keywords:
Archidendron bubalinum leaves, Induced alloxan, TLC, GOD-PAP, and MDAAbstract
Objective: This study describes the potential antidiabetic activity of ethanol extracts of Kabau leaves (Archidendron bubalinum)
Methods: Extraction was done using the maceration method with 96% ethanol as solvent. The simplicia and extracts were characterized, screened for phytochemicals using Thin Layer Chromatography (TLC). Blood glucose levels were examined by GOD-PAP enzymatic method. Wistar rat was induced by alloxan (120 mg/kg BW i. p) to hyperglycemic condition, the dose variations of Kabau leaves extract i. e 250, 500, and 1000 mg/kg BW (p. o). The data was statistically tested using one-way ANOVA with a confidence level of (p<0.05).
Results: The phytochemical screening showed the presence of alkaloids, flavonoids, phenolics, monoterpenes and sesquiterpenes, steroids, and triterpenoids, saponins. TLC showed that the extract contained spots (Rf 0.45) which are suspected to be flavone glycosides, biflavonyls, and unusually substituted flavones. Phenolic compounds (Rf 0.225; 0.25; 0.325 and 0.45) were characterized by a color change to blackish green after being sprayed with FeCl3. Saponin glycoside compounds (Rf 0.57) were characterized by the presence of purple spots after being sprayed with vanillin sulfate. Test animals in all test groups experienced hyperglycemia (>126 mg/dl) and a significant increase in blood glucose levels compared to the control group. MDA levels in test animals given a dose of 1000 mg/kg BW was 0.024±0.003.
Conclusion: Ethanol extract of Kabau leaves can reduce blood glucose levels in hyperglycemic rats by 33% at a dose of 1000 mg/kg BW. The results of one-way ANOVA (p<0.05) and Measurement of MDA levels in test animals was 0.024±0.003.
Downloads
References
Guyton AC, Hall JE. Buku ajar fisiologi kedokteran, edisi II. Jakarta: Buku Kedokteran EGC; 2008. p. 890-917.
Siwik RN, Sudrajat S. Efektivitas infusa biji jengkol (Archidendron jiringa) dan daun veronica terhadap penurunan kadar gula darah mencit (Mus mulucus) yang di induksi Aloksan. Prosiding Seminar Sains Dan Tekhnologi FMIPA Unmul. Samarinda, Indonesia; 2016.
Syafnir L, Krishnamurti Y, Ilma M. Uji aktivitas antidiabetes ekstrak etanol kulit jengkol (Archidendron pauciflorum (Benth.) I.C. Nielsen). Teknol Kesehatan. Prosiding Seminar Nasional Penelitian dan PKM Sains. Bandung: Universitas Islam Bandung. ISSN 2089-3582; 2014.
Suryanti V, Marliyana SD, Putri HE. Effect of germination on antioxidant activity, total phenolics, beta-carotene, ascorbic acid, and alpha-tocopherol contents of lead tree sprouts (Leucaena leucocephala (lmk.) de Wit). Int Food Res J. 2016;23(1):167-72.
Kubitzki K. Phytochemistry in plant systematics and evolution. In: Heywood VH, Moore DM, editors. Current concepts in plant taxonomy. The systematics association special volume No. 25. London: Academic Press; 1984.
Wink M, Mohamed GIA. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem Syst Ecol. 2003;31(8):897-917. doi: 10.1016/S0305-1978(03)00085-1.
Riasari H, Fauzi NI, Anggadiredja K, Hartati R, Sukrasno. In vivo antidiabetic screening of kabau (Archidendron bubalinum (Jack) nielsen seeds. Int J Appl Pharm. 2021;13(SI 4):228-34.
Eyth E, Basit H, Smith CJ. Glucose tolerance test. Treasure Island, (FL): Stat Pearls Publishing LLC; 2020.
Karasawa H, Nagata Goto S, Takaishi K, Kumagae Y. A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice. Metabolism. 2009;58(3):296-303. doi: 10.1016/j.metabol.2008.09.028, PMID 19217442.
Yuriska FA. Efek aloksan terhadap kadar glukosa darah tikus wistar [undergraduate thesis], Medical faculty; 2009.
Nurhasanah F. Efek antioksidan dari Ekstrak Biji Petai Cina (Leucaena leucophala L.) pada Tikus Putih. J Ilmu Kefarmasian Indones. 2005;3(1):13-6.
Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement Altern Med. 2013;13:120. doi: 10.1186/1472-6882-13-120, PMID 23721571.
Penfold J, Thomas RK, Tucker I, Petkov JT, Stoyanov SD, Denkov N. Saponin adsorption at the air-water interface-neutron reflectivity and surface tension study. Langmuir. 2018;34(32):9540-7. doi: 10.1021/acs.langmuir.8b02158. PMID 30028143.
Khotimah K. Skrining fitokimia dan identifikasi metabolit sekunder senyawa karpain pada ekstrak metanol daun carica pubescens lenne dan k. koch dengan. LC Ms. (Mass LC-T. Spectrometry)”. Skripsi. Malang. Universitas Islam Negeri Maulana Malik Ibrahim; 2016.
Herlina N, Rahayu Puji N, Soenarto, Limantara L. The composition and the content of pigments from some dyeing plant for skat weaving in Timorresse regency, East Nusa Tenggara. Jurnal. Salatiga: Universitas Kristen Satya Wacana; 2006.
Wang BJ, Yu Z, Hwang LS. Quantitative analyses of chlorophylls and their derivatives by thin layer chromatography. J Chin Agric Chem Soc. 1995;33:550-60.
Wagner H, Bladt S. Plant drug analysis: a thin layer chromatography. 2nd ed. Vol. 359. New York: Atlas Press. Springer; 1996. p. 362, 364.
Markham KR. Cara mengidentifikasi flavonoid, diterjemahkan oleh kosasih padmawinata. Bandung: Penerbit ITB; 1988. p. 41-7, 65-75.
Robinson T. Kandungan organik tumbuhan tinggi. Edisi Ke Enam. [Department of biochemistry university of Massa Chussetts. Diterjemahkan oleh Kosasih P. Bandung: Penerbit Institut Teknologi Bandung. Hal; 1995. p. 157.
Ball S. The neurohypophysis: endocrinology of vasopressin and oxytocin. South Dartmouth; 2017.
Sullivan KA, Lentz SI, Roberts JL, Feldman EL. Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets. 2008;9(1):3-13. doi: 10.2174/138945008783431763, PMID 18220709.
Hughes F, Mythen M, Montgomery H. The sensitivity of the human thirst response to changes in plasma osmolality: a systematic review. Perioper Med (Lond). 2018;7(1):1. doi: 10.1186/s13741-017-0081-4, PMID 29344350.
Christ Crain M, Bichet DG, Fenske WK, Goldman MB, Rittig S, Verbalis JG. Diabetes insipidus. Nat Rev Dis Primers. 2019 Aug 08;5(1):54. doi: 10.1038/s41572-019-0103-2, PMID 31395885.
Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biol Med. 1994;16(6):845-50. doi: 10.1016/0891-5849(94)90202-x, PMID 8070690.
Kumar N, Goel N. Phenolic acids: natural, versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370. PMID 31516850.
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013 Apr;34(2-3):121-38. doi: 10.1016/j.mam.2012.07.001, PMID 23506862.
Moldovan L, Moldovan NI. Oxygen free radicals and redox biology of organelles. Histochem Cell Biol. 2004;122(4):395-412. doi: 10.1007/s00418-004-0676-y, PMID 15452718.
Syafnir L, Yani K, Ilma M. Uji aktivitas antidiabtes ekstrak etanol kulit jengkol (Archidendron pauciflorum (benth) I.C Nielsen). Jurnal. Bandung: Universitas Islam Bandung. Hal; 2014. p. 65.
Cotelle N. Role of flavonoids in oxidative stress. Curr Top Med Chem. 2001;1(6):569-90. doi: 10.2174/1568026013394750, PMID 11895132.
Shahidi F, Wanasundara PK. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992;32:67-103.
Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci. 2002;957:57-69. doi: 10.1111/j.1749-6632.2002.tb02905.x, PMID 12074961.
Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biol Med. 1994;16(6):845-50. doi: 10.1016/0891-5849(94)90202-x, PMID 8070690.
Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod. 1998;61(1):71-6. doi: 10.1021/np970237h, PMID 9461655.
Panigrahy SK, Bhatt R, Kumar A. Targeting type II diabetes with plant terpenes: the new and promising antidiabetic therapeutics. Biologia. 2021;76(1):241-54. doi: 10.2478/s11756-020-00575-y.
Kaur KK, Allahbadia G, Singh M. Monoterpenes-a class of terpenoid group of natural products as a source of natural antidiabetic agents in the future-a review. CPQ Nutr. 2019;3:1-21.
Published
How to Cite
Issue
Section
Copyright (c) 2022 HESTI RIASARI, DIKI PRAYUGO WIBOWO, NOVI IRWAN FAUZI
This work is licensed under a Creative Commons Attribution 4.0 International License.