• FAHRAUK FARAMAYUDA Faculty of Pharmacy Universitas Jenderal Achmad Yani (UNJANI), Cimahi, West Java 40532, Indonesia, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia
  • SORAYA RIYANTI Faculty of Pharmacy Universitas Jenderal Achmad Yani (UNJANI), Cimahi, West Java 40532, Indonesia
  • SURYANI Faculty of Pharmacy Universitas Jenderal Achmad Yani (UNJANI), Cimahi, West Java 40532, Indonesia
  • AKHIRUL KAHFI SYAM Faculty of Pharmacy Universitas Jenderal Achmad Yani (UNJANI), Cimahi, West Java 40532, Indonesia
  • ELFAHM School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia, Biosciences and Biotechnology Research Center, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia
  • TOTIK MARIANI School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia
  • SUKRASNO School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia



O. aristatus, White-purple varieties, Purple varieties, Active compounds, TLC-densitometry


Objective: The main compounds in O. aristatus are rosmarinic acid, sinensetin, and eupatorin. Sinensetin and rosmarinic acid compounds have the potential as antiviral agents. The focus of this research is O. aristatus purple and white-purple varieties. This study aimed to determine the levels of three main secondary metabolites of O. aristatus, one of the specific standardizations.

Methods: The standardization parameters to be tested were to determine the main compound levels by using thin-layer chromatography densitometry on two varieties of O. aristatus.

Results: The highest value levels of sinensetin and rosmarinic acid in purple variety O. aristatus were 0.53 and 1.32% w/w, respectively. The highest level of eupatorin was 0.88% w/w in the ethanol extract of white-purple varieties of O. aristatus. The main secondary metabolites in the two varieties of O. aristatus were more significant in the leaves than in the stems. Meanwhile, the sinensetin and rosmarinic acid levels in the ethanol extract of leaves and stems of the purple variety O. aristatus were higher and significantly different than in the white-purple ones. However, the levels of eupatorin were higher and significantly (p<0.05) different in the white-purple variety compared to the purple variety.

Conclusion: The purple variety is due to greater sinensetin and rosmarinic acid levels in the purple variety than in the white-purple ones.


Download data is not yet available.


Barnes AJ, Phillipson LA. J. Herbal medicines. 3rd ed. London: Pharmaceutical Press; 2007.

Mohamed EA, Mohamed AJ, Asmawi MZ, Sadikun A, Ebrika OS, Yam MF. Antihyperglycemic effect of Orthosiphon stamineus benth leaves extract and its bioassay-guided fractions. Molecules. 2011;16(5):3787-801. doi: 10.3390/molecules16053787, PMID 21544041.

Indariani S, Wijaya C, Rahminiwati M, Winarno ME. Antihyperglycemic activity of functional drinks based on java tea (Orthosiphon aristatus) in streptozotocin-induced diabetic mice. Int Food Res J. 2014;21(1):349-55.

Choo BKM, Kundap UP, Kumari Y, Hue SM, Othman I, Shaikh MF. Orthosiphon stamineus leaf extract affects tnf-α and seizures in a zebrafish model. Front Pharmacol. 2018;9(February):139. doi: 10.3389/fphar.2018.00139, PMID 29527169.

Yam MF, Asmawi MZ, Basir R. An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf extract. J Med Food. 2008;11(2):362-8. doi: 10.1089/jmf.2006.065, PMID 18598181.

Bokhari RA, Tantowi NACA, Lau SF, Mohamed S. Java Tea (Orthosiphon stamineus) protected against osteoarthritis by mitigating inflammation and cartilage degradation: a preclinical study. Inflammopharmacol. 2018;26(4):939-49. doi: 10.1007/s10787-017-0432-2.

Yam MF, Ang LF, Salman IM, Ameer OZ, Lim V, Ong LM et al. Orthosiphon stamineus leaf extract protects against ethanol-induced gastropathy in rats. J Med Food. 2009;12(5):1089-97. doi: 10.1089/jmf.2008.0005, PMID 19857074.

Yuniarto A, Susilawati E, Khairunnisa I, Juanda D, Setiawan F. Antioxidant and gastric ulcer healing effect of Orthosiphon stamineus (Benth.) leaves extract in aspirin-induced rats. Asian J Pharm Clin Res. 2017;10(2):2-4.

Yam MF, Basir R, Asmawi MZ, Ismail Z. Antioxidant and hepatoprotective effects of Orthosiphon stamineus Benth. standardized extract. Am J Chin Med. 2007;35(1):115-26. doi: 10.1142/S0192415X07004679, PMID 17265556.

Maheswari C, Maryammal R, Venkatanarayanan R. Hepatoprotective activity of ”Orthosiphon stamineus” on liver damage caused by paracetamol in rats. Jordan J Biol Sci. 2008;1(3):105-8.

Alshawsh MA, Abdulla MA, Ismail S, Amin ZA, Qader SW, Hadi HA. Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon stamineus. Molecules. 2012;17(5):5385-95. doi: 10.3390/molecules17055385, PMID 22569417.

Akowuah GA, Zhari I, Norhayati I, Sadikun A. Radical scavenging activity of methanol leaf extracts of Orthosiphon stamineus. Pharm Biol. 2004;42(8):629-35.

George A, Chinnappan S, Choudhary Y, Choudhary VK, Bommu P, Wong HJ. Effects of a proprietary standardized Orthosiphon stamineus ethanolic leaf extract on enhancing memory in Sprague Dawley rats possibly via blockade of adenosine a 2a receptors. Evid Based Complement Alternat Med. 2015;2015(1):375837. doi: 10.1155/2015/375837, PMID 26649059.

Abraika OSS, Atangwho IJ, Sadikun A, Asmawi MZ, Hussain EA. In vitro activity-guided vasodilatory effect of Orthosiphon stamineus leaves. J Integr Med. 2012;2(3):255-61.

Mohamad Ripim NS, Fazil N, Kholid Ibrahim SN, Ahamad Bahtiar A, Yip CW, Ibrahim N et al. Antiviral Properties of Orthosiphon stamineus aqueous extract in herpes simplex virus type 1 infected cells. Sains Malays. 2018;47(8):1725-30. doi: 10.17576/jsm-2018-4708-11.

Harun NH, Septama AW, Jantan I. Immunomodulatory effects of selected Malaysian plants on the CD18/11a expression and phagocytosis activities of leukocytes. Asian Pac J Trop Biomed. 2015;5(1):48-53. doi: 10.1016/S2221-1691(15)30170-2.

Woottisin S, Hossain RZ, Yachantha C, Sriboonlue P, Ogawa Y, Saito S. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats. J Urol. 2011;185(1):323-8. doi: 10.1016/j.juro.2010.09.003, PMID 21075390.

Friedman T. The effect of rosmarinic acid on immunological and neurological systems: basic science and clinical review. Med. 2015;4(1):50-9. doi: 10.14200/jrm.2015.4.0105.

Kim HK, Lee JJ, Lee JS, Park YM, Yoon TR. Rosmarinic acid down-regulates the LPS-induced production of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) via the MAPK pathway in bone-marrow-derived dendritic cells. Mol Cells. 2008;26(6):583-9. PMID 18799930.

Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue K, Yasuda A. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp Biol Med (Maywood). 2004;229(3):247-54. doi: 10.1177/153537020422900305, PMID 14988517.

Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy. 2004;34(6):971-7. doi: 10.1111/j.1365-2222.2004.01979.x, PMID 15196288.

Youn J, Lee KH, Won J, Huh SJ, Yun HS, Cho WG. Beneficial effects of rosmarinic acid on suppression of collagen-induced arthritis. J Rheumatol. 2003;30(6):1203-7. PMID 12784390.

Sarkar K, Das RK. Preliminary identification of hamamelitannin and rosmarinic acid as COVID-19 inhibitors based on molecular docking. Lett Drug Des Discov. 2021;18(1):67-75. doi: 10.2174/1570180817999200802032126.

Wondmkun YT, Mohammed OA. Severe acute respiratory syndrome-Coronavirus-2 (SARS-COV-2) inhibition and other antiviral effects of Ethiopian medicinal plants and their compounds traditional medicines for COVID-19 treatment. Med Pub Journals. 2020;6(24):1-7.

Sampangi Ramaiah MH, Vishwakarma R, Uma Shaanker RU. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci. 2020;118(7):1087-92. doi: 10.18520/cs/v118/i7/1087-1092.

Rowaiye A, Onuh O, Oladimeji Salami J, Bur D, Njoku M, Nma I. In silico identification of the potential natural inhibitors of SARS-CoV-2 guanine-N7 methyltransferase. ChemRxiv. 2020;29(1):1-39.

Sekiou O, Bouziane I, Bouslama Z, Djemel A. In silico identification of potent inhibitors of COVID-19 main protease (Mpro) and angiotensin-converting enzyme 2 (ACE2) from natural products: quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxychloroquine against. ChemRxiv. 2020;24(1):1-28.

Adem S, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 2021;85(5):153310. doi: 10.1016/j.phymed.2020.153310, PMID 32948420.

Dahab MA, Hegazy MM, Abbass HS. Hordatines as a potential inhibitor of COVID-19 main protease and RNA polymerase: an in-silico approach. Nat Prod Bioprospect. 2020;10(6):453-62. doi: 10.1007/s13659-020-00275-9, PMID 33090359.

Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences. Nat Prod Bioprospect. 2020;10(5):297-306. doi: 10.1007/s13659-020-00253-1, PMID 32557405.

Sharma AD, Kaur I. Eucalyptol (1,8 cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 coronavirus infection by molecular docking studies. Preprints. 2020;30(4):2020030455.

Abdelwahed W, Falah S, Hasan R. Antiviral activity of different misai kucing extracts against herpes simplex virus type 1. Eurasian J Biosci. 2020;14(1):1003-12.

Ikeda K, Tsujimoto K, Uozaki M, Nishide M, Suzuki Y, Koyama AH. Inhibition of multiplication of herpes simplex virus by caffeic acid. Int J Mol Med. 2011;28(4):595-8. doi: 10.3892/ijmm.2011.739, PMID 21725588.

Medini F, Megdiche W, Mshvildadze V, Pichette A, Legault J, St-Gelais A. Antiviral-guided fractionation and isolation of phenolic compounds from Limonium densiflorum hydroalcoholic extract. C R Chim. 2016;19(6):726-32. doi: 10.1016/j.crci.2016.03.006.

Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Alternat Med. 2011;2011(1):253643. doi: 10.1093/ecam/nep187, PMID 20008902.

Astani A, Schnitzler P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran J Microbiol. 2014;6(3):149-55. PMID 25870747.

Bourne KZ, Bourne N, Reising SF, Stanberry LR. Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Res. 1999;42(3):219-26. doi: 10.1016/s0166-3542(99)00020-0, PMID 10443534.

Benencia F, Courreges MC. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res. 2000;14(7):495-500. doi: 10.1002/1099-1573(200011)14:7<495::aid-ptr650>;2-8, PMID 11054837.

Sharifi Rad J, Salehi B, Baghalpour N, Kobarfard F, Sharifi Rad M, Mohammadizade M. Antiviral activity of monoterpenes thymol, carvacrol and p-cymene against herpes simplex virus in vitro. Int Pharm Acta. 2018;1(1):73.

Shin HS, Kang SI, Yoon SA, Ko HC, Kim SJ. Sinensetin attenuates LPS-induced inflammation by regulating the protein level of IκB-α. Biosci Biotechnol Biochem. 2012;76(4):847-9. doi: 10.1271/bbb.110908, PMID 22484952.

Utsunomiya H, Ichinose M, Ikeda K, Uozaki M, Morishita J, Kuwahara T. Inhibition by caffeic acid of the influenza a virus multiplication in vitro. Int J Mol Med. 2014;34(4):1020-4. doi: 10.3892/ijmm.2014.1859, PMID 25050906.

Nagy MM, Al-Mahdy DA, Abd El Aziz OM, Kandil AM, Tantawy MA, El Alfy TSM. Chemical composition and antiviral activity of essential oils from Citrus reshni Hort. ex tanaka (Cleopatra mandarin) cultivated in Egypt. J Essent Oil Bear Plants. 2018;21(1):264-72. doi: 10.1080/0972060X.2018.1436986.

Li Y, Lai Y, Wang Y, Liu N, Zhang F, Xu P. 1, 8-Cineol protect against influenza-virus-induced pneumonia in mice. Inflammation. 2016;39(4):1582-93. doi: 10.1007/s10753-016-0394-3, PMID 27351430.

Choi HJ. Chemical constituents of essential oils possessing anti-influenza a/ws/33 virus activity. Osong Public Health Res Perspect. 2018;9(6):348-53. doi: 10.24171/j.phrp.2018.9.6.09, PMID 30584499.

Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ. Drug screening for autophagy inhibitors based on the dissociation of beclin1-bcl2 complex using bifc technique and mechanism of eugenol on anti-influenza a virus activity. Plos One. 2013;8(4):e61026. doi: 10.1371/journal.pone.0061026, PMID 23613775.

Zhou B, Yang Z, Feng Q, Liang X, Li J, Zanin M. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in influenza a virus-infected cells. J Ethnopharmacol. 2017;199:60-7. doi: 10.1016/j.jep.2017.01.038. PMID 28119097.

Tsukamoto Y, Ikeda S, Uwai K, Taguchi R, Chayama K, Sakaguchi T. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. Plos One. 2018;13(5):e0197664. doi: 10.1371/journal.pone.0197664. PMID 29782545.

Haid S, Novodomska A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D. A plant-derived flavonoid inhibits entry of all hcv genotypes into human hepatocytes. Gastroenterology. 2012;143(1):213-22.e5. doi: 10.1053/j.gastro.2012.03.036, PMID 22465429.

Kong L, Li S, Liao Q, Zhang Y, Sun R, Zhu X. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res. 2013;98(1):44-53. doi: 10.1016/j.antiviral.2013.02.003, PMID 23422646.

Chang CD, Lin PY, Hsu JL, Shih WL. Ursolic acid suppresses hepatitis B virus x protein-mediated autophagy and chemotherapeutic drug resistance. Anticancer Res. 2016;36(10):5097-107. doi: 10.21873/anticanres.11079, PMID 27798869.

Duan SP, Zhu LH, Li P, Song XW, Wang HW, Shen BS. Effect and mechanism of danshensu on hepatitis B virus reverse transcriptase and antigen expression. Zhongguo Zhong Yao Za Zhi. 2016;41(7):1297-301. doi: 10.4268/cjcmm20160722, PMID 28879746.

Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother. 2007;51(9):3367-70. doi: 10.1128/AAC.00041-07, PMID 17576830.

Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerg Microbes Infect. 2020;9(1):1194-205. doi: 10.1080/22221751.2020.1767512, PMID 32397909.

Abd Elazem IS, Chen HS, Bates RB, Huang RC. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral Res. 2002;55(1):91-106. doi: 10.1016/s0166-3542(02)00011-6, PMID 12076754.

Lin Z, Neamati N, Zhao H, Kiryu Y, Turpin JA, Aberham C. Chicoric acid analogues as HIV-1 integrase inhibitors. J Med Chem. 1999;42(8):1401-14. doi: 10.1021/jm980531m, PMID 10212126.

McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG, Robinson WE. Dicaffeoylquinic and di-caffeoyl tartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother. 1998;42(1):140-6. doi: 10.1128/AAC.42.1.140, PMID 9449274.

Zhang HS, Chen XY, Wu TC, Zhang FJ. Tanshinone II inhibits tat-induced HIV-1 transactivation through the redox-regulated AMPK/Nampt pathway. J Cell Physiol. 2014;229(9):1193-201. doi: 10.1002/jcp.24552, PMID 24414799.

Mengoni F, Lichtner M, Battinelli L, Marzi M, Mastroianni CM, Vullo V. In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med. 2002;68(2):111-4. doi: 10.1055/s-2002-20256, PMID 11859458.

Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod. 1998;61(9):1090-5. doi: 10.1021/np9800710, PMID 9748372.

Xu HX, Zeng FQ, Wan M, Sim KY. Anti-HIV triterpene acids from Geum japonicum. J Nat Prod. 1996;59(7):643-5. doi: 10.1021/np960165e, PMID 8759159.

Febjislami S, Kurniawati A, Melati M, Wahyu Y. Morphological characters, flowering and seed germination of the Indonesian medicinal plant Orthosiphon aristatus. Biodiversitas. 2019;20(2):328-37. doi: 10.13057/biodiv/d200204.

Lai Keng C, LPS. Morphological similarities and differences between the two varieties of cats whiskers (Orthosiphon stamineus Benth.) grown in Malaysia. Int J Bot. 2005;2(1):1-6. doi: 10.3923/ijb.2006.1.6.

De Padua LS, Bunyapraphatsara N. Publishers B. Plant Resources of South-East Asia. 1999;12(1):368.

Lee W. Micropropagation and cell culture of misai kucing (Orthosiphon stamineus Benth.) and detection of rosmarinic acid in the in vitro cultures [thesis]; 2004.

Trisilawati O. Response of three cat’s whiskers clones (Orthosipon aristatus) against arbuscular mycorrhizae MAc-1 MAc-2 ejurnal lit bang. Agriculture. 2004;16(1):18-26.

Craciun M, Cretu G, Miricioiu M, Birloiu A, Clej DD, Nechifor A. Identification, separation and quantification of rosmarinic acid from extract of Orthosiphon by HPTLC. Rev Chim. 2014;65(6):621-6.

Fahrauk Faramayuda, Mariani TS, Elfahmi E, Sukrasno S. Short communication: callus induction in purple and white-purple varieties of orthosiphon aristatus (Blume). Miq Biodiversitas. 2020;21(10):4967-72. doi: 10.13057/biodiv/d211063.

Almatar M, Rahmat Z, Salleh FM. Preliminary morphological and anatomical study of Orthosiphon stamineus. IJPBR. 2013;1(4):1-6. doi: 10.30750/ijpbr.1.4.1.

Sreenath S. Some species of Lamiaceae-comparative anatomical studies. Indo Am J Pharm Res. 2013;3(11):9249-54.

Tnah LH, Lee CT, Lee SL, Ng CH, Ng KKS. Development and characterization of microsatellites of an important medicinal plant Orthosiphon stamineus (misai kucing). Biochem Syst Ecol. 2014;55(4):317-21. doi: 10.1016/j.bse.2014.02.018.

Nurul A. Study of molecular and genetic diversity of Java Tea (Orthosiphon stamineus Benth.) as a basis for plant improvement [thesis]. Science University of Malaysia; 2015.

Hossain MA, Ismail Z. Quantification and enrichment of sinensetin in the leaves of Orthosiphon stamineus. Arab J Chem. 2016;9(2):S1338-41.

Febjislami S, Melati M, Kurniawati A, Wahyu Y. Agronomic character and sinensetin levels of some cat whisker (Orthosiphon stamineus) plant accessions. J Hortik Indones. 2019;9(3):206-15.

Batubara I, Komariah K, Sandrawati A, Nurcholis W. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Sci Rep. 2020;10(1):20945. doi: 10.1038/s41598-020-77991-2, PMID 33262368.

Guo Z, Liang X, Xie Y. Qualitative and quantitative analysis on the chemical constituents in Orthosiphon stamineus Benth. using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2019;5164(164):135-47. doi: 10.1016/j.jpba.2018.10.023, PMID 30390555.

Cai X, Xiao C, Xue H, Xiong H, Hang Y, Xu J, Lu, Y. A comparative study of the antioxidant and intestinal protective effects of extracts from different parts of Java tea (Orthosiphon stamineus). Food Sci Nutr. 2018;6(3):579-84. doi: 10.1002/fsn3.584, PMID 29876108.

Abdul Razak MF, Pin K, Shah Z, Luqman Chuah A, Yee S, Yaw IRazak MFBA, Yong PK, Shah ZM, Abdullah LC, Yee SS, Yaw ITCS. The effects of varying solvent polarity on extraction yield of Orthosiphon stamineus leaves. J Appl Sci. 2012;12(11):1207-10. doi: 10.3923/jas.2012.1207.1210.

Pin KY, Chuah AL, Rashih AA, Mazura MP, Fadzureena J, Vimala S, Rasadah MA. Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities. J Trop For Sci. 2010;22(4):448-55.

Faramayuda F, Mariani TS, Elfahmi E, Sukrasno. Phytochemical analysis of callus two varieties Orthosiphon aristatus (Blume) miq on murashige and Skoog media: a strategic step of secondary metabolite production. Int J App Pharm. 2021;13(2):71-7. doi: 10.22159/ijap.2021.v13s2.14.

Faramayuda F, Sri Mariani TS, Elfahmi E, Sukrasno. Micropropagation and secondary metabolites content of white-purple varieties of Orthosiphon aristatus Blume miq. Pakistan J Biological Sci. 2021;24(8):858-67. doi: 10.3923/pjbs.2021.858.867, PMID 34486353.

Faramayuda F, Julian S, Windyaswari AS, Mariani TSES. A comparative pharmacognostic study of the two orthoshipon aristatus (blume) MIQ. Varieties JEBAS 2021;9(2):S228-33. doi: 10.18006/2021.9(Spl-2-ICOPMES_2020).S228.S233.

Faramayuda F, Mariani TS, Elfahmi S. Potential of Orthosiphon aristatus blume miq as antiviral: a review. Trop J Nat Prod Res. 2021;5(3):410-9.

Faramayuda F, Mariani TS, Elfahmi, Sukrasno E, Sukrasno S. Identification of secondary metabolites from callus Orthosiphon aristatus (Blume) miq by thin layer chromatography. Sarhad J Agric. 2021;37(3):1081-8. doi: 10.17582/journal.sja/2021/37.3.1081.1088.

Faramayuda F, Mariani TS, Elfahmi SS. Chemical compound identification of two varieties cat whiskers (Orthosiphon aristatus Blume Miq.) from in vitro culture. Sarhad J Agric. 2021;37(4):1355-63.

Faramayuda F, Mariani TS, Elfahmi, Sukrasno. Effects of 6-benzyl amino purine and naphthalene acetic acid on shoot and root induction in purple variety Orthosiphon aristatus. Plant Cell Biotechnol Mol Biol. 2021;22(May):362-71.

Han Jie L, Jantan I, Yusoff SD, Jalil J, Husain K. Sinensetin: an insight on its pharmacological activities, mechanisms of action and toxicity. Front Pharmacol. 2020;11:553404. doi: 10.3389/fphar.2020.553404. PMID 33628166.

Faramayuda F, Mariani TS, Elfahmi, Sukrasno. Sinensetin contents of purple and white purple variety of orthosiphon aristatus (Blume) miq Jordan J. Biol Sci 2022;15(1):127-32. doi: 10.54319/jjbs/150117.



How to Cite

FARAMAYUDA, F., RIYANTI, S., SURYANI, SYAM, A. K., ELFAHM, MARIANI, T., & SUKRASNO. (2022). STANDARDIZATION OF ORTHOSIPHON ARISTATUS, BLUME MIQ. International Journal of Applied Pharmaceutics, 14(5), 72–79.



Original Article(s)

Most read articles by the same author(s)