• WIRA WAHYUDI NANDAYASA Faculty of Pharmacy, Andalas University, Padang, Indonesia
  • FEBRIYENTI Faculty of Pharmacy, Andalas University, Padang, Indonesia
  • HENNY LUCIDA Faculty of Pharmacy, Andalas University, Padang, Indonesia




Nano-phytosome, Vitamin C, Optimization, Factorial design


Objective: To design an optimal formulation for quercetin and vitamin C nano-phytosome.

Methods: Nano-phytosomes are prepared by the thin layer hydration technique using a 2-level-5-factor design experimental. A total of 32 experimental formulas were used for data analysis. The ratio of quercetin: soy lecithin (X1), the ratio of quercetin: cholesterol (X2), stirring speed (X3), stirring temperature (X4), and stirring time (X5) were used as independent factors, while globule size as a dependent factor. Data analysis was carried out by Design Expert12® application. Characterization of the optimal formula included physicochemical evaluation, globule size analysis, zeta potential, polydispersity index, entrapment efficiency, Transition Electron Microscopy (TEM) analysis, and FTIR analysis.

Results: The optimal formula consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol; stirring speed 763.986 rpm; stirring time of 59 min, at temperature 51.73 °C which produced 59.26 nm average globule size, PDI value 0.66; zeta potential value-35.93±0.95 mV and average SPAN value 0.61. This formulation showed entrapment efficiency of quercetin 91.69±0.18 % and vitamin C 90.82±0.13 %. The TEM and FITR analysis showed the morphological of the globules and interactions between the drugs, soy lecithin, and cholesterol to form nano-phytosomes.

Conclusion: The conditions to obtain the optimal formula for quercetin vitamin C nano-phytosome consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol; stirring speed 763.986 rpm; stirring time of 59 min, and at temperature 51.73 °C


Download data is not yet available.


Kelly GS. Quercetin. Altern Med Rev. 2011;16(2):172-94.

Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharm Sci. 2014;1(1):146-60.

Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr. 2020;60(19):3290-303. doi: 10.1080/10408398.2019.1683810, PMID 31680558.

Wang W, Sun C, Mao L, Ma P, Liu F, Yang J. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol. 2016;56:21-38, doi: 10.1016/j.tifs.2016.07.004.

Kaşıkcı MB, Bagdatlıoglu N. Bioavailability of quercetin. Curr Res Nutr Food Sci. 2016;4(Special Issue 2:146-51. doi: 10.12944/CRNFSJ.4.Special-Issue-October.20.

Ansar S, Siddiqi NJ, Zargar S, Ganaie MA, Abudawood M. Hepatoprotective effect of quercetin supplementation against acrylamide-induced DNA damage in Wistar rats. BMC Complement Altern Med. 2016;16(1):327. doi: 10.1186/s12906-016-1322-7, PMID 27576905.

Romero M, Jimenez R, Sanchez M, Lopez Sepulveda R, Zarzuelo MJ, O’Valle F. Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis. 2009;202(1):58-67. doi: 10.1016/j.atherosclerosis.2008.03.007, PMID 18436224.

Yadav BK, Kaur J, Kumar N, Vyas M, Bashary R, Mittal A. Quercetin as an important nutraceutical and medicinal agent. Plant Arch. 2020;20:2537-47.

hai ZD, lun WK, Zhang X, Qiong DS, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med. 2020;18(2).

Lakhanpal P, Rai DK. Quercetin: A versatile flavonoid. Internet Journal of Medical Update EJOURNAL. 2007;2(2). doi: 10.4314/ijmu.v2i2.39851.

Carita AC, Fonseca Santos B, Shultz JD, Michniak Kohn B, Chorilli M, Leonardi GR. Vitamin C: one compound several uses. Advances for delivery, efficiency and stability. Nanomedicine. 2020;24:102117. doi: 10.1016/j.nano.2019. 102117. PMID 31676375.

Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 2020;11(Jun):1451. doi: 10.3389/fimmu.2020.01451, PMID 32636851.

Baladia E, Pizarro AB, Rada G. Vitamin C for the treatment of COVID-19: A living systematic review protocol. medRxiv. 2020.

Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: problems and promises. Curr Med Chem. 2013;20(20):2572-82. doi: 10.2174/09298673113209990120, PMID 23514412.

Suryawanshi JAS. Phytosome: an emerging trend in herbal drug treatment J. J Med Genet Genomics. 2011;3(6).

Ghanbarzadeh B, Babazadeh A, Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016;15:126-35. doi: 10.1016/j.fbio.2016.07.006.

Babazadeh A, Zeinali M, Nano-Phytosome HH. A developing platform for herbal anticancer agents in cancer therapy. Curr Drug Targets. 2017;18(999):1.

Phytosomes BS. The new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res. 2009;2.

Patel J, Patel R, Khambholja K, Patel N. An overview of phytosomes as an advanced herbal drug delivery system. Asian J Pharm Sci. 2009;4.

Rasaie S, Ghanbarzadeh S, Mohammadi M, Hamishehkar H. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm Sci. 2014;20(3).

Maryana W, Rahma A, Mudhakir D. Formulation and physical evaluation phytosome containing silymarin for oral administration: formulation and physical evaluation. Phytosome Containing Silymarin for Oral Administration. 2015 Sep.

Maryana W, Rachmawati H, Mudhakir D. Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery. Mater Today Proc. 2016;3(3):855-66. doi: 10.1016/j.matpr.2016.02.019.

Kamal AH, El-Malla SF, Hammad SF. A review on UV spectrophotometric methods for simultaneous multicomponent analysis. Eur J Pharm Res. 2016;3(2):348-60.

Abd El-Fattah AI, Fathy MM, Ali ZY, El-Garawany AEA, Mohamed EK. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem Biol Interact. 2017;271:30-8. doi: 10.1016/j.cbi.2017.04.026, PMID 28460884.

Dachriyanus D, Organik Secara Spektroskopi ASS. Multimedia LPTIK organik secara spektroskopi ASS, editor. Padang: Lembaga Pengembangan Teknologi Informasi dan Komunikasi (LPTIK) Universitas Andalas; 2017. p. 139.

Chaerunisaa AY, Dewi MK, Sriwidodo JIM, Joni IM, Dwiyana RF. Development of cathelicidin in liposome carrier using thin layer hydration method. Int J App Pharm. 2022;14(4):178-85. doi: 10.22159/ijap.2022v14i4.44480.

Saputra YE, Dzakwan M, Dewi NA. Evaluation nano-phytosome of myricetin with thin layer film hydration-sonication method; 2020;26:294-7. doi: 10.2991/ahsr.k.200523.070.

Anderson MJ, Whitcomb PJ, Kraber SL, Adams W. Stat-ease handbook for experimenters. Stat-Ease 2017;11(27):1–5.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1-17. doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Lipid-based nanoparticles for drug delivery systems. Elsevier Inc; 2018. p. 47-76. doi: 10.1016/B978-0-12-814031-4.00003-9.

Alhakamy NA, A Fahmy UA, Badr Eldin SM, Ahmed OAA, Asfour HZ, Aldawsari HM. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics. 2020;12(4). doi: 10.3390/pharmaceutics12040346, PMID 32290412.

Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y. Phytosomes loaded with Mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10(1):90-101. doi: 10.1021/mp300489p, PMID 23194396.



How to Cite

NANDAYASA, W. W., FEBRIYENTI, & LUCIDA, H. (2023). OPTIMIZATION AND CHARACTERIZATION OF QUERCETIN VITAMIN C NANO-PHYTOSOME FORMULATION. International Journal of Applied Pharmaceutics, 15(1), 51–55. https://doi.org/10.22159/ijap.2023.v15s1.47507



Original Article(s)