IMPROVEMENT OF SIMVASTATIN SOLUBILITY USING HPMCAS, LOCUST BEAN GUM, SODIUM ALGINATE AND TPGS AS A POLYMER WITH SOLID DISPERSION METHOD

Authors

  • IYAN SOPYAN Department Pharmaceutics and Technology of Pharmacy. Faculty of Pharmacy, Universitas Padjadjaran, Sumedang-45363, West Java, Indonesia
  • ZIRLY YUSRIANI KAMILAH Department Pharmaceutics and Technology of Pharmacy. Faculty of Pharmacy, Universitas Padjadjaran, Sumedang-45363, West Java, Indonesia
  • SANDRA MEGANTARA Department Pharmaceutical Analysis and Medicinal Chemistry. Faculty of Pharmacy, Universitas Padjadjaran, Sumedang-45363, West Java, Indonesia
  • SRIWIDODO Department Pharmaceutics and Technology of Pharmacy. Faculty of Pharmacy, Universitas Padjadjaran, Sumedang-45363, West Java, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023v15i4.48294

Keywords:

Solubility, Simvasatin, Solid dispersion

Abstract

Objective: Simvastatin (SV) is a cholesterol-lowering drug that classified in BCS (Biopharmaceutics Classification System) Class II class with high permeability but low solubility value. This study aims to obtain a solid dispersion formula that can increase the solubility of Simvastatin. HPMCAS, Locust Bean Gum, Sodium Alginate, and TPGS are four candidate polymers that will be selected by in silico study to make a solid dispersion formula.

Methods: The solid dispersion was prepared with two polymers, Locust Bean Gum (LBG), which has no hydrogen bonds with Simvastatin, and Sodium Alginate (SA), which has hydrogen bonds with Simvastatin, made by the ratio of mass 1:1, 1:2, 1:3, 1:4. Materials were evaluated by solubility and dissolution studies, then characterized using FTIR, DSC, and PXRD.

Results: Each drug-polymer ratio showed an increase in solubility and dissolution, but the SV-LBG formula (1:4) showed the largest increase, with a 4 folded increase in solubility and a roughly 2 folded increase in dissolution. The characterisation FTIR data demonstrate that the drug molecules are disseminated inside the polymer, and the PXRD diffractogram demonstrated a deacrease in crystallinity to the amorphous phase, and the DSC thermogram also demonstrated changes in thermal behavior.

Conclusion: Solid dispersion is a promising method for increasing the solubility of simvastatin. The use of locust bean gum polymer was proven to increase the solubility and dissolution of simvastatin with the best formula SV-LBG (1:4).

Downloads

Download data is not yet available.

References

Rodriguez Aller M, Guillarme D, Veuthey JL, Gurny R. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol. 2015;30:342-51. doi: 10.1016/j.jddst.2015.05.009.

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727, PMID 22830056.

Pharm DMR. The essential guide to simvastatin: usage, precautions, interactions and side effects. Interact Media Licensing. 2021. p. 16.

Murtaza G. Solubility enhancement of simvastatin: a review. Acta Pol Pharm. 2012;69(4):581-90. PMID 22876598.

Sopyan I. Dissolution rate repairing of simvastatin as a new approach in cocrystallization. Pharm Lett. 2017;13(9):18-27.

Bolourchian N, Mahboobian MM, Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran J Pharm Res. 2013;12Suppl:11-20. PMID 24250667.

Dalvi PB, Gerange AB, Ingale PR. Solid dispersion: strategy to enhance solubility. J Drug Delivery Ther. 2015;5(2):20-8. doi: 10.22270/jddt.v5i2.1060.

Mir K, Khan N. Solid dispersion: an overview of the technology. Int J Pharm Sci Res. 2017;8:2378-87.

Tiwari R, Tiwari G, Srivastava B, Rai AK. Solid dispersions: an overview to modify bioavailability of poorly water-soluble drugs. Int J PharmTech Res. 2009;1(4):1338-49.

Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn. 2021;39(16):6306-16. doi: 10.1080/07391102.2020.1796811. PMID 32698689.

Siswandi S, Rusdiana T, Levita J. Virtual screening of co-formers for ketoprofen co-crystallization and the molecular properties of the co-crystal. J App Pharm Sci. 2015;5(6):78-82. doi: 10.7324/JAPS.2015.50613.

Gao H, Wang W, Dong J, Ye Z, Ouyang D. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. Eur J Pharm Biopharm. 2021;158:336-46. doi: 10.1016/j.ejpb.2020.12.001, PMID 33301864.

Panghal D, Nagpal M, Thakur GS, Arora S. Dissolution improvement of atorvastatin calcium using modified locust bean gum by the solid dispersion technique. Sci Pharm. 2014;82(1):177-91. doi: 10.3797/scipharm.1301-23, PMID 24634850.

Borba PAA, Pinotti M, de Campos CEM, Pezzini BR, Stulzer HK. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs. Carbohydr Polym. 2016;137:350-9. doi: 10.1016/j.carbpol.2015.10.070, PMID 26686139.

Song IS, Nam SJ, Jeon JH, Park SJ, Choi MK. Enhanced bioavailability and efficacy of silymarin solid dispersion in rats with acetaminophen-induced hepatotoxicity. Pharmaceutics. 2021;13(5):628. doi: 10.3390/pharmaceutics13050628, PMID 33925040.

Siraj N, Athar SHM. Khan DrG, Raza S, Ansari Mohd A. Review on solid dispersion of poor water soluble drug by using natural polymers. The Pharma. Innov J. 2019;8(1):631-6.

Patel M, Tekade A, Gattani S, Surana S. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech. 2008;9(4):1262-9. doi: 10.1208/s12249-008-9171-4, PMID 19115112.

Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharpaceutical Press (PhP) and American Pharmacists Association (APhA); 2009.

Pawar SN, Edgar KJ. Alginate esters via chemoselective carboxyl group modification. Carbohydr Polym. 2013;98(2):1288-96. doi: 10.1016/j.carbpol.2013.08.014, PMID 24053805.

Hosny KM, Khames A, Elhady SSA. Preparation and evaluation of orodispersible tablets containing hydroxylbutyl-β-cyclodextrin-simvastatin solid dispersion. Trop J Pharm Res. 2013;12(4):469-76. doi: 10.4314/tjpr.v12i4.4.

Nanda A. preparation, characterization and dissolution of solvent evaporated simvastatin solid dispersions. JMPAS. 2021;10(3):2813-28. doi: 10.22270/jmpas.V10I3.1179.

Sopyan I, Syah ISK, Nurhayti D, Budiman A. Improvement of simvastatin dissolution rate using derivative non-covalent approach by solvent drop grinding method. Int J App Pharm. 2020:21-4. doi: 10.22159/ijap.2020v12i1.35865.

Gustaman F. Pengaruh penambahan cremophor el terhadap peningkatan laju disolusi tablet simvastatin. J Pharmacopolium. 2019;2(1). doi: 10.36465/jop.v2i1.471.

Mehmood Y, Youusaf H, Khursheed A, Bashir I, Majeed I. Preparation and characterization of solid dispersion tablet of simvastatin employing starch phosphate as carrier. Int J Chem Pharm Sci. 2014;5(2):79-84.

Komal K, Kaur T, Singh AP, Singh AP, Sharma P. Enhancement of solubility and dissolution rate of simvastatin by using solid dispersion technique along with diferent combination of polymers. J Drug Deliv Ther. 2018;8(2):32-40.

Sonar PA, Behera AL, Banerjee SK, Gaikwad DD, Harer SL. Preparation and characterization of simvastatin solid dispersion using skimmed milk. Drug Dev Ind Pharm. 2015;41(1):22-7. doi: 10.3109/03639045.2013.845836, PMID 24160569.

Li W, Zheng H, Ye C, Wu T, Fan M, Feng J. Effect of the Intermolecular Hydrogen Bond between Carbazole and N, N-Dimethylformamide/Isopropanolamine on the solubility of carbazole. Energy Fuels. 2012;26(10):6316-22. doi: 10.1021/ef301240t.

Sathisaran I, Dalvi SV. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10(3):108. doi: 10.3390/pharmaceutics10030108, PMID 30065221.

Saputri KE, Fakhmi N, Kusumaningtyas E, Priyatama D, Santoso B. Docking molekular potensi anti diabetes melitus tipe 2 turunan zerumbon sebagai inhibitor aldosa reduktase dengan autodock-vina. Chim Nat Acta. 2016;4(1):16-20. doi: 10.24198/cna.v4.n1.10443.

Arwansyah A. Simulasi molecular docking senyawa kurkumin dana sebagai selective androgen receptor modulators (SARMs) pada kanker prostat. Dinamika. 2015;5(2).

Yao H, Ke H, Zhang X, Pan SJ, Li MS, Yang LP. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding. J Am Chem Soc. 2018;140(41):13466-77. doi: 10.1021/jacs.8b09157, PMID 30244569.

Bikiaris DN. Solid dispersions, part I: Recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv. 2011;8(11):1501-19. doi: 10.1517/ 17425247.2011.618181, PMID 21919807.

Pradhan R, Tran TH, Choi JY, Choi IS, Choi HG, Yong CS. Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res. 2015;38(4):522-33. doi: 10.1007/s12272-014-0399-0, PMID 24895145.

França MT, O’Reilly Beringhs A, Nicolay Pereira R, Martins Marcos T, Bazzo GC, Stulzer HK. The role of sodium alginate on the supersaturation state of the poorly soluble drug chlorthalidone. Carbohydr Polym. 2019;209:207-14. doi: 10.1016/j.carbpol.2019.01.007, PMID 30732801.

Nagpal M, Kaur L, Chander J, Sharma P. Dissolution enhancement of domperidone fast disintegrating tablet using modified locust bean gum by solid dispersion technique. JPTRM. 2016;4(1):1-11. doi: 10.15415/jptrm.2016.41001.

National Center for Biotechnology Information. Simvastatin; 2021. Pubchem Compound Summary for CID. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/54454. [Last accessed on 01 Sep 2021].

Kaity S, Isaac J, Ghosh A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr Polym. 2013;94(1):456-67. doi: 10.1016/j.carbpol.2013.01.070, PMID 23544563.

Augustijns P, Brewster M. Solvent systems and their selection in pharmaceutics and biopharmaceutics. Springer Science+Business Media; 2007. p. 466.

Published

07-07-2023

How to Cite

SOPYAN, I., KAMILAH, Z. Y., MEGANTARA, S., & SRIWIDODO. (2023). IMPROVEMENT OF SIMVASTATIN SOLUBILITY USING HPMCAS, LOCUST BEAN GUM, SODIUM ALGINATE AND TPGS AS A POLYMER WITH SOLID DISPERSION METHOD. International Journal of Applied Pharmaceutics, 15(4), 231–237. https://doi.org/10.22159/ijap.2023v15i4.48294

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 3 4 > >>