ENHANCEMENT OF DISSOLUTION AND BIOAVAILABILITY OF SIMVASTATIN BY SOLID DISPERSION TECHNIQUE USING SUGAR-BASED CARRIERS

Authors

  • VENKATA NAGA JYOTHI NAKKA Research Scholar Gitam School of Pharmacy, Gitam Deemed to be University, Rudraram, Hyderabad, India. Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522302, Andhra Pradesh, India https://orcid.org/0000-0001-7405-435X
  • KUMAR SHIVA GUBBIYAPPA Principal, GITAM School of Pharmacy, GITAM Deemed to be University, Rudraram, Patencheru, Sanga Reddy-502329, Telangana, India https://orcid.org/0000-0002-9075-6535
  • NAGESH NAGARAJU Senior Vice President, F R and D, APL Research Centre, Aurobindo Pharma Ltd, Sy. No. 313, Bachupally, Medchal, Malkajgiri-500090, Hyderabad, Telangana, India https://orcid.org/0009-0009-4793-623X

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49442

Keywords:

Simvastatin, Xylitol, Soluplus, Lactulose, Sorbitol, Solvent evaporation

Abstract

Objective: The research aims to enhance poorly water-soluble drug Simvastatin (SMV) solubility and bioavailability by solid dispersion (SD) using various sugar carriers like lactulose, xylitol, Sorbitol, and soluplus.

Methods: First, the drug was subjected to determine bulk density, carr’s index, Hausner’s ratio, angle of repose, solubility analysis in various solvents like 0.1 N HCl, 6.8pH, 7.2pH phosphate buffers, methanol, and ethanol and preformulation studies. via various carrier concentrations (1:0.5, 1:1, 1:1.5, 1:2, and 1:3), SMV solid dispersions (SD s) were made by solvent evaporation and fusion. The various physiochemical parameters of each formulation were tested.

Results: For various physicochemical criteria, all of the formulations were found to be within the allowed pharmacopoeial limits. Preformulation studies such as FT-IR demonstrated the lack of interactions between drugs and excipients. In comparison to the other solvents, 0.1N HCl showed SMV to be more soluble. The SDs underwent yield, entrapment, and in vitro drug release study evaluations. 88 to 100.68% recovery rates and 92 to 101% capture efficiency were observed. While SDs containing Sorbitol released 74-98% of the medicine, formulations utilizing Sorbitol demonstrated 80-99% drug release, and formulations using xylitol as a carrier released 83-99% of the drug. For more than 60 min, the formulation, including lactulose, delivered 91-100% of the Simvastatin dose.

Conclusion: Lactulose-containing SMV SDs demonstrated superior release characteristics, and an optimized formulation with a 1:1.5 drug-to-carrier ratio has been chosen.

Downloads

Download data is not yet available.

References

Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G. Development of self-micro emulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004 Apr 15;274(1-2):65-73. doi: 10.1016/j.ijpharm.2003.12.028, PMID 15072783.

McClelland GA, Stubbs RJ, Fix JA, Pogany SA, Zentner GM. Enhancement of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitor efficacy through administration of a controlled-porosity osmotic pump dosage form. Pharm Res. 1991 Jul;8(7):873-6. doi: 10.1023/a:1015899328105, PMID 1924137.

Cheng H, Sutton SC, Pipkin JD, Zentner GM, Rogers JD, Schwartz JI. Evaluation of sustained/controlled-release dosage forms of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitors in dogs and humans. Pharm Res. 1993;10(11):1683-7. doi: 10.1023/a:1018997308946, PMID 8290485.

USP 24/NF, USP Convention, Rockville; 2000. p. 1942.

Bolourchian N, Mahboobian MM, Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran J Pharm Res. 2013;12 Suppl:11-20. PMID 24250667.

Silva TD, Arantes VT, Resende JA, Speziali NL, de Oliveira RB, Vianna-Soares CD. Preparation and characterization of solid dispersion of simvastatin. Drug Dev Ind Pharm. 2010;36(11):1348-55. doi: 10.3109/03639041003801901, PMID 20545512.

Javeer SD, Patole R, Amin P. Enhanced solubility and dissolution of simvastatin by HPMC-based solid dispersions prepared by hot melt extrusion and spray-drying method. J Pharm Investig. 2013;43(6):471-80. doi: 10.1007/s40005-013-0092-1.

Shiralashetti S, Patil A, Patil J. Influence of method of preparation on solubility, physicochemical properties and in vitro release profile of simvastatin-cyclodextrin inclusion complexes: a comparative study. Int J ChemTech Res. 2010;2(1):562-71.

Zhang F, Aaltonen J, Tian F, Saville DJ, Rades T. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin. Eur J Pharm Biopharm. 2009;71(1):64-70. doi: 10.1016/j.ejpb.2008.07.010, PMID 18703139.

Ambike AA, Mahadik KR, Paradkar A. Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res. 2005;22(6):990-8. doi: 10.1007/s11095-005-4594-z, PMID 15948043.

Meng J, Zheng L. Application of mixture experimental design to simvastatin apparent solubility predictions in the microemulsifion formed by self-micro emulsifying. Drug Dev Ind Pharm. 2007 Sep;33(9):927-31. doi: 10.1080/03639040601003733, PMID 17891578.

Cetkovic Z, Cvijic S, Vasiljevic D. In vitro/in silico approach in the development of simvastatin-loaded self-microemulsifying drug delivery systems. Drug Dev Ind Pharm. 2018;44(5):849-60. doi: 10.1080/03639045.2017.1414835, PMID 29228833.

Ding Z, Hao Aiyou, Zhang P, Wang Zhongni. Surface properties and solubility of simvastatin in the micelles of polyglycerol diisostearate ethoxylates. J Dispers Sci Technol. 2007;28(4):495-500. doi: 10.1080/01932690701276924.

Patil P, Patil V, Paradkar A. Formulation of a self-emulsifying system for oral delivery of simvastatin: in vitro and in vivo evaluation. Acta Pharm. 2007;57(1):111-22. doi: 10.2478/v10007-007-0009-5, PMID 19839411.

Padhye SG, Nagarsenker MS. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci. 2013;75(5):591-8. PMID 24403661.

Krishnam Raju K, Sudhakar B, Murthy KVR. Factorial design studies and biopharmaceutical evaluation of simvastatin loaded solid lipid nanoparticles for improving oral bioavailability. ISRN Nanotechnol. 2014;2014:1-8. doi: 10.1155/2014/951016.

Nokhodchi A, Talari Roya, Valizadeh H, Jalali MB. An investigation on the solid dispersions of chlordiazepoxide. Int J Biomed Sci. 2007;3(3):211-6. PMID 23675046.

Allen LV, Jr, Yanchick VA, Maness DD. Dissolution rates of corticosteroids utilizing sugar glass dispersions. J Pharm Sci. 1977;66(4):494-7. doi: 10.1002/jps.2600660409, PMID 853365.

Das A, Nayak AK, Mohanty B, Panda S. Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers. ISRN Pharm. 2011;2011:819765. doi: 10.5402/2011/819765, PMID 22389861.

Jyoti J, Shikha A. Solubility enhancement of allopurinol by solid dispersion using sugar carriers. Int J Curr Res. 2019;11(8):6524-9.

Nair HA, Gadhiraju G, Sunny G. Development of orodispersible tablets of loratadine containing an amorphous solid dispersion of the drug in Soluplus® using design of experiments. Int J Pharm Pharm Sci. 2023 Aug;15(8):19-27. doi: 10.22159/ijpps.2023v15i8.47750.

Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058-66. doi: 10.1021/js980403l, PMID 10514356.

Narang A, Shrivastava A. Melt extrusion solid dispersion technique. Drug Dev Ind Pharm. 2002;26(8):111-5.

Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107-17. doi: 10.1016/s0939-6411(02)00061-9, PMID 12191680.

Chokshi R, Hossein Z. Hot melt extrusion technique: a review. Int J Pharm Res. 2004;3:3-16.

Perissutti B, Newton JM, Podczeck F, Rubessa F. Preparation of extruded carbamazepine and PEG 4000 as a potential rapid release dosage form. Eur J Pharm Biopharm. 2002;53(1):125-32. doi: 10.1016/s0939-6411(01)00209-0, PMID 11777760.

Vilhelmsen T, Eliasen H, Schaefer T. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int J Pharm. 2005;303(1-2):132-42. doi: 10.1016/j.ijpharm.2005.07.012, PMID 16139973.

Tsinontides SC, Rajniak P, Pham D, Hunke WA, Placek J, Reynolds SD. Freeze drying–principles and practice for successful scale-up to manufacturing. Int J Pharm. 2004;280(1-2):1-16. doi: 10.1016/j.ijpharm.2004.04.018, PMID 15265542.

Singh H, Philip B, Pathak K Preparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer. Iran J Pharm Res. 2012;11(2):433-45. PMID 24250467.

Sopyan I, Riyaldi MR, Mita SR, Hariono M. Increasing solution in the drug simvastatin with solid dispersion technique using polymer Soluplus. Int J App Pharm. 2023;15(4):160-5. doi: 10.22159/ijap.2023v15i4.48293.

Teja SB, Patil SP, Shete G, Patel S, Bansal AK. Drug-excipient behavior in polymeric amorphous solid dispersions. J Excipients Food Chem. 2016;4(3):70-94.

Saharan VA, Kukka V, Kataria M, Gera M, Choudhury PK. Dissolution enhancement of drugs. Part II: effect of carriers. Int J Health Res. 2009;2(3):207-23. doi: 10.4314/ijhr.v2i3.47904.

Mura P, Faucci MT, Parrini PL. Effects of grinding with microcrystalline cellulose and cyclodextrins on the ketoprofen physicochemical properties. Drug Dev Ind Pharm. 2001;27(2):119-28. doi: 10.1081/ddc-100000478, PMID 11266223.

Lin SY, Kao YH, Yang JC. Grinding effect on some pharmaceutical properties of drugs by adding β-cyclodextrin. Drug Dev Ind Pharm. 1988;14(1):99-118. doi: 10.3109/03639048809151963.

Published

07-01-2024

How to Cite

JYOTHI NAKKA, V. N., GUBBIYAPPA, K. S., & NAGARAJU, N. (2024). ENHANCEMENT OF DISSOLUTION AND BIOAVAILABILITY OF SIMVASTATIN BY SOLID DISPERSION TECHNIQUE USING SUGAR-BASED CARRIERS. International Journal of Applied Pharmaceutics, 16(1), 239–245. https://doi.org/10.22159/ijap.2024v16i1.49442

Issue

Section

Original Article(s)